
Recurrent Pixel Embedding for Instance Grouping
— Supplementary Material

Shu Kong, Charless Fowlkes
Dept. of Computer Science, University of California, Irvine

{skong2, fowlkes}@ics.uci.edu
project page with code and demo

In this supplementary material, we provide proofs of the
propositions introduced in the main paper for understanding
our objective function and grouping mechanism. Then, we
provide the details of the mean-shift algorithm, computation
of gradients and how it is adapted for recurrent grouping.
We illustrate how the gradients are back-propagated to the
input embedding using a toy example. Finally, we include
more qualitative results on boundary detection and instance
segmentation.

1. Analysis of Pairwise Loss for Spherical Em-
bedding

In this section, we provide proofs for the propositions
presented in the paper which provide some analytical under-
standing of our proposed objective function, and the mech-
anism for subsequent pixel grouping mechanism.

Proposition 1 For n vectors {x1, . . . ,xn}, the total
intra-pixel similarity is bounded as

∑
i6=j x

T
i xj ≥

−
∑n
i=1 ‖xi‖22. In particular, for n vectors on the hyper-

sphere where ‖xi‖2 = 1, we have
∑
i 6=j x

T
i xj ≥ −n.

Proof 1 First note that ‖x1 + · · · + xn‖22 ≥ 0. We
expand the square and collect all the cross terms so
we have

∑
i x

T
i xi +

∑
i 6=j x

T
i xj ≥ 0. Therefore,∑

i 6=j x
T
i xj ≥ −

∑n
i=1 ‖xi‖22. When all the vectors are

on the hyper-sphere, i.e. ‖xi‖2 = 1, then
∑
i 6=j x

T
i xj ≥

−
∑n
i=1 ‖xi‖22 = −n. �

Proposition 2 Given N vectors {x1, . . . ,xn} on a 2-
sphere, i.e. xi ∈ R3, ‖xi‖2 = 1,∀i = 1 . . . n, choosing

α ≤ 1−
(

2π√
3N

)
, guarantees that [sij − α]+ ≥ 0 for some

pair i 6= j. Choosing α > 1 − 1
4

((
8π√
3N

) 1
2 − CN− 2

3

)2

,

guarantees the existence of an embedding with [sij−α]+ =
0 for all pairs i 6= j.

We treat all the n vectors as representatives of n different
instances in the image and seek to minimize pairwise simi-
larity, or equivalently maximize pairwise distance (referred
to as Tammes’s problem, or the hard-spheres problem [14]).

Proof 2 Let d = max
{xi}

min
i 6=j
‖xi − xj‖2 be the distance be-

tween the closest point pair of the optimally distributed
points. Asymptotic results in [10] show that, for some con-
stant C > 0,(8π√

3n

) 1
2 − Cn− 2

3 ≤ d ≤
(8π√

3n

) 1
2

(1)

Since ‖xi − xj‖22 = 2− 2xTi xj , we can rewrite this bound

in terms of the similarity sij = 1
2

(
1 +

xT
i xj

‖xi‖2‖xj‖2

)
, so that

for any i 6= j:

1−
(2π√

3N

)
≤ sij ≤ 1− 1

4

((8π√
3N

) 1
2 −CN− 2

3

)2

(2)

Therefore, choosing α ≤ 1 −
(

2π√
3N

)
, guarantees that

[sij − α]+ ≥ 0 for some pair i 6= j. Choosing α >

1− 1
4

((
8π√
3N

) 1
2 − CN− 2

3

)2

, guarantees the existence of

an embedding with [sij − α]+ = 0. �

2. Details of Recurrent Mean Shift Grouping
There are two commonly used multivariate kernels in

mean shift algorithm. The first, Epanechnikov kernel [7, 5],
has the following profile

KE(x) =

{
1
2c
−1
d (d+ 2)(1− ‖x‖22), if ‖x‖2 ≤ 1

0, otherwise
(3)

where cd is the volume of the unit d-dimensional sphere.
The standard mean-shift algorithm computes the gradient

1

https://github.com/aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping

Figure 1: Distribution of calibrated cosine similarity between pairs of pixels. After 10 iterations of mean-shift grouping.
Margin is 0.5 for negative pairs. From the figures, we believe that the mean shift grouping mechanism forces learning to
focus on those pixel pairs that will not be corrected by mean shift grouping itself if running offline, and thus pushing down
to parameters in the the deep neural network to learn how to correct them during training.

of the kernel density estimate given by

p(x) =
1

N

N∑
i=1

KE(
x− xi
b

)

and identifies modes (local maxima) where ∇p(x) = 0.
The scale parameter b is known as the kernel bandwidth and
determines the smoothness of the estimator. The gradient of
p(x) can be elegantly computed as the difference between
x and the mean of all data points with ‖x− xi‖ ≤ b, hence
the name “mean-shift” for performing gradient ascent.

Since the Epanechnikov profile is not differentiable
at the boundary, we use the squared exponential kernel
adapted to vectors on the sphere:

K(x,xi) ∝ exp(δ2xTxi) (4)

which can be viewed as a natural extension of the Gaussian
to spherical data (known as the von Mises Fisher (vMF)
distribution [9, 3, 13, 12]). In our experiments we set the
bandwidth δ based on the margin α so that 1

δ = 1−α
3 .

Our proposed algorithm also differs from the standard
mean-shift clustering (i.e., [6]) in that rather than perform-
ing gradient ascent on a fixed kernel density estimate p(x),
at every iteration we alternate between updating the embed-
ding vectors {xi} using gradient ascent on p(x) and re-
estimating the density p(x) for the updated vectors. This
approach is termed Gaussian Blurring Mean Shift (GBMS)
in [4] and has converge rate guarantees for data which starts
in compact clusters.

In the paper we visualized embedding vectors after
GBMS for specific examples. Figure 1 shows aggregate
statistics over a collection of images (in the experiment of
instance segmentation). We plot the distribution of pairwise

similarities for positive and negative pairs during forward
propagation through 10 iterations. We can observe that the
mean shift module produces sharper distributions, driving
the similarity between positive pairs to 1 making it trivial to
identify instances.

2.1. Gradient Calculation for Recurrent Mean Shift

To backpropagate gradients through an iteration of
GBMS, we break the calculation into a sequence of steps
below where we assume the vectors in the data matrix X
have already been normalized to unit length for its columns.

S =XTX

K =exp(δ2S) ,

d =KT1

q =d−1

P = (1− η)I+ ηKdiag(q)

Y =XP

(5)

where Y is the updated data after one iteration which is
subsequently renormalized to project back onto the sphere.
Let ` denote the loss and � denote element-wise product.

Backpropagation gradients are then given by:

∂`

∂X
= 2X

∂`

∂S

∂`

∂S
= δ2 exp(δ2S)� ∂`

∂K
∂`

∂δ
= 2δ

∑
ij

(
(sij)� exp(δ2sij)�

∂`

∂kij

)
∂`

∂K
= 1

(∂`
∂d

)T
∂`

∂d
=
∂`

∂q
� (−d−2)

∂`

∂K
= η

(∂`
∂P

)
(q1T)

∂`

∂q
= η

(∂`
∂P

)T
K1

∂`

∂X
=

∂`

∂Y
PT

∂`

∂P
= XT ∂`

∂Y

(6)

2.2. Toy Example of Mean Shift Backpropagation

In the paper we show examples of the gradient vec-
tors backpropagated through recurrent mean shift to the ini-
tial embedding space. Backpropagation through this fixed
model modulates the loss on the learned embedding, in-
creasing the gradient for initial embedding vectors whose
instance membership is ambiguous and decreasing the gra-
dient for embedding vectors that will be correctly resolved
by the recurrent grouping phase.

Figure 2 shows a toy example highlighting the difference
between supervised and unsupervised clustering. We gener-
ate a set of 1-D data points drawn from three Gaussian dis-
tributions with mean and standard deviation as (µ = 3, σ =
0.2), (µ = 4, σ = 0.3) and (µ = 5, σ = 0.1), respectively,
as shown in Figure 2 (a). We use mean squared error for the
loss with a fixed linear regressor yi = 0.5∗xi−0.5 and fixed
target labels. The optimal embedding would set xi = 3 if
yi = 1, and xi = 5 if yi = 2. We perform 30 gradient
updates of the embedding vectors xi ← xi − α∇xi

` with
a step size α as 0.1. We analyze the behavior of Gaussian
Blurring Mean Shift (GBMS) with bandwidth as 0.2.

If updating the data using gradient descent without
GBMS inserted, as shown in Figure 2 (b), we can see the
data move towards the ideal embedding in terms of classi-
fication and they are squeezed in shape yet still falling into
three visible clusters. Figure 2 (c) depicts the trajectories
of 100 random data points during the 30 updates. However,
if running GBMS for unsupervised clustering on these data
with the default setting (bandwidth is 0.2), we can see they
are grouped into three piles, as shown in Figure 2 (d).

Now we insert the GBMS module to update these data
with different loops, and compare how this effects the per-
formance. We show the updated data distributions and those
after five loops of GBMS grouping in column (e) and (f)
of Figure 2, respectively. We notice that, with GBMS, all
the data are grouped into two clusters; while with GBMS
grouping they become more compact and are located ex-
actly on the “ideal spot” for mapping into label space (i.e.
3 and 5) and achieving zero loss. On the other hand, we
also observe that, even though these settings incorporates
different number of GBMS loops, they achieve similar vi-
sual results in terms of clustering the data. To dive into the
subtle difference, we randomly select 100 data and depict
their trajectories in column (g) and (h) of Figure 2, using a
single loss on top of the last GBMS loop or multiple losses
over every GBMS loops, respectively. We have the follow-
ing observations:

1. By comparing with Figure 2 (c), which depicts update
trajectories without GBMS, GBMS module provides
larger gradient to update those data further from their
“ideal spot” under both scenarios.

2. From (g), we can see the final data are not updated into
tight groups. This is because that the updating mech-
anism only sees data after (some loops of) GBMS,
and knows that these data will be clustered into tight
groups through GBMS.

3. A single loss with more loops of GBMS provides
greater gradient than that with fewer loops to update
data, as seen in (g).

4. With more losses over every loops of GBMS, the gra-
dients become even larger that the data are grouped
more tightly and more quickly. This is because that
the updating mechanism also incorporates the gradi-
ents from the loss over the original data, along with
those through these loops of GBMS.

To summarize, our GBMS based recurrent grouping
module indeed provides meaningful gradient during train-
ing with back-propagation. With the convergent dynamics
of GBMS, our grouping module becomes especially more
powerful in learning to group data with suitable supervi-
sion.

3. Additional Boundary Detection Results
We show additional boundary detection results on

BSDS500 dataset [1] based on our model in Figure 4, 5, 6,
7 and 8. Specifically, besides showing the boundary detec-
tion result, we also show 3-dimensional pixel embeddings
as RGB images before and after fine-tuning using logistic
loss. From the consistent colors, we can see (1) our model
essentially carries out binary classification even using the

Figure 2: Trajectory of updating data using back-propagation without mean shift module (top row), and with the Gaussian
Blurring Mean Shift (GBMS). To compare the results, we vary the number of GBMS loops in the grouping module, and
use either a single loss at the final GBMS loop or multiple losses on all GBMS loops. All the configurations can shift data
towards the “ideal spots” (3 or 5 depending on the label) in terms of the fixed regressor.

pixel pair embedding loss; (2) after fine-tuning with logis-
tic loss, our model captures also boundary orientation and
signed distance to the boundary. Figure 3 highlights this
observation for an example image containing round objects.
By zooming in one plate, we can observe a “colorful Mo-
bius ring”, indicating the embedding features for the bound-
ary also capture boundary orientation and the signed dis-
tance to the boundary.

4. Additional Results on Instance-Level Se-
mantic Segmentation

We show more instance-level semantic segmentation re-
sults on PASCAL VOC 2012 dataset [8] based on our model
in Figure 9, 10 and 11. As we learn 64-dimensional embed-
ding (hyper-sphere) space, to visualize the results, we ran-
domly generate three matrices to project the embeddings to
3-dimension vectors to be treated as RGB images. Besides
showing the randomly projected embedding results, we also
visualize the semantic segmentation results used to prod-
uct instance-level segmentation. From these figures, we ob-
serve the embedding for background pixels are consistent,
as the backgrounds have almost the same color. Moreover,
we can see the embeddings (e.g. in Figure 9, the horses in
row-7 and row-13, and the motorbike in row-14) are able to
connect the disconnected regions belonging to the same in-
stance. Dealing with disconnected regions of one instance
is an unsolved problem for many methods, e.g. [2, 11], yet
our approach has no problem with this situation.

References
[1] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour de-

tection and hierarchical image segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (PAMI),
33(5):898–916, 2011. 3

[2] M. Bai and R. Urtasun. Deep watershed transform for in-
stance segmentation. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition (CVPR), pages
2858–2866. IEEE, 2017. 5

[3] A. Banerjee, I. S. Dhillon, J. Ghosh, and S. Sra. Clustering
on the unit hypersphere using von mises-fisher distributions.
Journal of Machine Learning Research, 6(Sep):1345–1382,
2005. 2

[4] M. A. Carreira-Perpinán. Generalised blurring mean-shift al-
gorithms for nonparametric clustering. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 1–8. IEEE, 2008. 2

[5] Y. Cheng. Mean shift, mode seeking, and clustering. IEEE
Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 17(8):790–799, 1995. 1

[6] D. Comaniciu and P. Meer. Mean shift analysis and appli-
cations. In The Proceedings of the IEEE International Con-
ference on Computer Vision (ICCV), volume 2, pages 1197–
1203. IEEE, 1999. 2

[7] V. A. Epanechnikov. Non-parametric estimation of a multi-
variate probability density. Theory of Probability & Its Ap-
plications, 14(1):153–158, 1969. 1

[8] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (voc) chal-
lenge. International Journal of Computer Vision (IJCV),
88(2):303–338, 2010. 5

[9] R. Fisher. Dispersion on a sphere. In Proceedings of the
Royal Society of London A: Mathematical, Physical and En-
gineering Sciences, volume 217, pages 295–305. The Royal
Society, 1953. 2

[10] W. Habicht and B. Van der Waerden. Lagerung von punk-
ten auf der kugel. Mathematische Annalen, 123(1):223–234,
1951. 1

[11] A. Kirillov, E. Levinkov, B. Andres, B. Savchynskyy, and
C. Rother. Instancecut: from edges to instances with mul-
ticut. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition (CVPR), 2017. 5

[12] T. Kobayashi and N. Otsu. Von mises-fisher mean shift for
clustering on a hypersphere. In International Conference on
Pattern Recognition (ICPR), pages 2130–2133. IEEE, 2010.
2

[13] K. V. Mardia and P. E. Jupp. Directional statistics, volume
494. John Wiley & Sons, 2009. 2

[14] E. B. Saff and A. B. Kuijlaars. Distributing many points on
a sphere. The mathematical intelligencer, 19(1):5–11, 1997.
1

Figure 3: An image highlighting the structure of the embedding for an image with circular boundaries. We observe a “Mobius
effect” where the embedding encodes both the orientation and distance to the boundary.

Figure 4: Visualization for boundary detection (part-1/5). Images are randomly selected from BSDS500 test set. For each
image, we show the embedding vectors at different layers from the model before and after fine-tuning using logistic loss. We
can see that the boundary embedding vectors after fine-tuning not only highlights the boundary pixels, but also captures to
some extent the edge orientation and distance from the colors conveyed.

Figure 5: Visualization for boundary detection (2/5). Images are randomly selected from BSDS500 test set. For each image,
we show the embedding vectors at different layers from the model before and after fine-tuning using logistic loss. We can
see that the boundary embedding vectors after fine-tuning not only highlights the boundary pixels, but also captures to some
extent the edge orientation and distance from the colors conveyed.

Figure 6: Visualization for boundary detection (3/5). Images are randomly selected from BSDS500 test set. For each image,
we show the embedding vectors at different layers from the model before and after fine-tuning using logistic loss. We can
see that the boundary embedding vectors after fine-tuning not only highlights the boundary pixels, but also captures to some
extent the edge orientation and distance from the colors conveyed.

Figure 7: Visualization for boundary detection (4/5). Images are randomly selected from BSDS500 test set. For each image,
we show the embedding vectors at different layers from the model before and after fine-tuning using logistic loss. We can
see that the boundary embedding vectors after fine-tuning not only highlights the boundary pixels, but also captures to some
extent the edge orientation and distance from the colors conveyed.

Figure 8: Visualization for boundary detection (5/5). Images are randomly selected from BSDS500 test set. For each image,
we show the embedding vectors at different layers from the model before and after fine-tuning using logistic loss. We can
see that the boundary embedding vectors after fine-tuning not only highlights the boundary pixels, but also captures to some
extent the edge orientation and distance from the colors conveyed.

Figure 9: Visualization of generic and instance-level semantic segmentation with random projection of the embedding vectors
(part-1/3).

Figure 10: Visualization of generic and instance-level semantic segmentation with random projection of the embedding
vectors (part-2/3).

Figure 11: Visualization of generic and instance-level semantic segmentation with random projection of the embedding
vectors (part-3/3).

