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In this supplementary material, we first provide ad-
ditional analysis of the proposed gating module on the
Cityscapes dataset [3], comparing quantitatively the per-
formance of models with tied/untied weights, average gat-
ing or soft-weighted gating using either the learned atten-
tion or depth (ground-truth or estimated from monocular
input). Then, we display more examples of SUN-RGBD
dataset [4], including the depth prediction and semantic
segmentation in the recurrent loops. Finally, we show
more qualitative results on Cityscapes and Stanford-2D-3D
datasets [1] including results of gating using learned atten-
tion map and depth adaptation within the recurrent loops.

1. Analysis of Depth-aware Gating Module
In this section, we analyze the proposed depth-aware gat-

ing module with detailed results in Table 1. We perform the
ablation study on the Cityscapes dataset [3]. Specifically,
we train the following models sequentially, initializing from
the previous in order (except the fourth model which learns
attention to gate).

1. “baseline” is our DeepLab-like baseline model which
adds two convolutional (with 3×3 kernels) layers
above the ResNet101 backbone.

2. “tied, avg.” is the model we train based on “base-
line” by using the same 3×3 kernel but with par-
allel branches using different dilation rates equal to
{1, 2, 4, 8, 16}, respectively. The kernel weights in the
five branches are tied so in order to make processing
scale-invariant. We average the resulting feature maps
for the final output prior to classification.

3. “gt-depth, tied, gating” uses the quantized ground-
truth depth map to select which of the five branches is
used at each spatial location; the pooling window size
is determined according to the inverse of the ground-
truth depth value.

4. “gt-depth, untied, gating” is the same structure as “gt-
depth, tied, gating” but unleashing the tied kernels in
the five branches. These untied kernels improve the
flexibility and representation power of the network.
Figure 1 (a) depicts this model.

5. “attention, untied, gating” is trained independently
from the previous models and is trained without any
depth supervision loss on the gating signal. Instead,
the gating acts as a generic attentional signal that mod-
ulates spatially adaptive pooling. Specifically, we train
an attention branch to produce a soft weighted com-
bination of the features from multiple pooling at dif-
ferent scales (softmax followed by element-wise mul-
tiplication) We also adopt untied weights for the scale-
specific pooling branches. The architecture is similar
to that depicted in Figure 1 (b), but without any depth
supervision.

6. “pred-depth, untied, gating” is our final model in
which we learn a quantized depth predictor to gate the
five branches which is supervised during training with
the depth loss and then fine-tuned. This model deter-
mines the size of pooling window based on its pre-
dicted depth map. Figure 1 (b) shows the architecture
of this model.

Quantitative evaluation is shown in Table 1 and highlight
the nIoU results which specifically benchmark performance
on dynamic objects. We can see that averaging multiple
dilated versions of the kernel with our model “tied, avg.”
improves the performance noticeably over baseline. This
is consistent with the observation in [2], in which the large
view-of-field version of DeepLab performs better. The ben-
efit can be explained by the large dilation rate increasing the
size of the receptive field, allowing more contextual infor-
mation to be captured at higher levels of the network. With
the gating mechanism, either using ground-truth depth map
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or the predicted one, the performance is improved further
over non-adaptive pooling. The depth-aware gating module
helps determine the pooling window size wisely, which is
better than averaging all branches equally as in our “tied,
avg.” model and DeepLab. Moreover, by unleashing the
tied kernels, the “gt-depth untied, gating” improves over
“gt-depth, tied, gating” remarkably. We conjecture that this
is because the untied kernels provide more flexibility to dis-
tinguish features at different scales and allow selection of
the appropriate non-invariant features from lower in the net-
work.

Interestingly, the attention-gating model performs well,
but using the predicted depth map achieves the best among
all these compared models. We attribute this to three rea-
sons. Firstly, unlike ground-truth depth, the predicted depth
is smooth without holes or invalid entries. When using
ground-truth depth on Cityscapes dataset, we assign equal
weight on the missing entries so that the gating actually
averages the information at different scales. This average
pooling might be harmful in some cases such as very small
object at distance. This can be taken as complementary evi-
dence that the blindly averaging all branches achieves infe-
rior performance to using the depth-aware gating. Secondly,
the predicted depth maps have some object-aware pattern
structure, which might be helpful for segmentation. From
the visualization shown later in Figure 4, we can observe
such patterns, e.g. for cars. When trained without depth-
supervision, the attention map (also in Figure 4) discovers
a different strategy which uses small pooling regions near
object boundaries. Thirdly, the depth prediction branch, as
well as the attention branch, generally increases the repre-
sentational power and flexibility of the whole model which
is beneficial for segmentation when sufficient training data
is available to avoid overfitting.

2. Results on the SUN-RGBD dataset
In Figure 2, we show the depth prediction results of sev-

eral images randomly picked from the test set of SUN-
RGBD. Note that the there are unnatural regions in the
ground-truth depth maps, which are the result of refined
depth completion by the algorithm in [4]. Visually, these
regions do not always make sense and constitute bad depth
completions. In contrast, our predicted depth maps are
much smoother than the ground-truth. We also evaluate
our depth prediction on SUN-RGBD dataset, and achieve
0.754, 0.899 and 0.961 by the three threshold metrics re-
spectively. As SUN-RGBD is an extension of NYU-depth-
v2 dataset, it has similar data statistics resulting in similar
prediction performance.

In Figure 3, we show fourteen randomly selected images
and their segmentation results at loops of the recurrent re-
fining module. Visually, we can see that the our recurrent
module refines the segmentation result in the loops.

3. Visualization on Large Perspective Images
In Figure 4 and 5, we visualize more results on

Cityscapes and Stanford-2D-3D datasets, respectively.
First, we show the segmentation prediction and the attention
map after training with the unsupervised attentional mech-
anism in the third column. We can see the attention map
appears to encode the distance from object boundaries. We
hypothesize this selection mechanism serves to avoid pool-
ing features across different semantic segments while still
utilizing large pooling regions within each region. This is
understandable and desirable in practice, as per-pixel fea-
ture vectors have different feature statistics for different cat-
egories.

We also compare the segmentation results and depth es-
timate for adaptation in the recurrent refinement loops (last
three columns in Figure 4 and 5). We notice that the depth
estimate for adaptation changes remarkably in the loop (the
depth module is fine-tuned using the segmentation loss only
in training). In the Cityscapes dataset, the depth estimate
improves quantitatively over iterations, particularly for se-
mantic objects such as cars. However, in the Stanford-2D-
3D dataset, the average pooling size selected decreases over
the iterations in a coarse-to-fine manner. We conjecture that
this is due to the “top-down” signal from the depth esti-
mate at the previous loop. The recurrent refinement module
also fills the holes in large areas of the predicted label map,
such as the light reflection regions on the car in street scene
(Cityscapes) and white board in the second image (row 3
and 4) of panoramic photos (Stanford-2D-3D).
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Figure 1: (a) Depth-aware gating module using the ground-truth depth map, and (b) depth-aware gating module using the
predicted depth map. The grids within the feature map blocks indicate different pooling field sizes. Here we depict three
different pooling window sizes while in our actual experiments we quantize the depth map into five scale bins.

Figure 2: Visualization of images from SUN-RGBD dataset and their ground-truth depth and our predicted depth on the three
rows, respectively. We scale all the depth maps into a fixed range of [0, 105]. In this sense, the color of the depth maps directly
reflect the absolute physical depth. Note that there are unnatural regions in the ground-truth depth maps, which have been
refined by the algorithm in [4]. Visually, these refined region do not always make sense and are incorrect depth completions.
In contrast, our monocular predictions are quite smooth.



Figure 3: Visualization of the output on SUN-RGBD dataset. We show fourteen randomly selected images from the test
set with their segmentation output from both feed-forward pathway and recurrent loops. In the ground-truth segmentation
annotation, we can see that there are many regions (with black color) not annotated.



Figure 4: Visualization of the results on Cityscapes dataset. For five random images from the validation set, we show the
input perspective street scene photos, ground-truth annotation, raw disparity and the five-scale quantized depth map in the
leftmost two columns. Then, we show the segmentation prediction and the attention map using our unsupervised attentional
mechanism in the third column. In the remaining three columns, we show the output of our depth-aware adaptation over
each iteration of recurrent refinement, from loop-0 to loop-2. Note that the more yellowish the color is, the closer the object
is to the camera and the finer scale of the feature maps the model selects to process. From the visualization, we can see 1)
the attention map helps the model avoid pooling across semantic segments by using smaller pooling near boundaries; 2) the
depth-adaptation in the recurrent refinement loops improves depth prediction for some semantic object categories like the
cars. We attribute this to to the top-down signal from previous iterations.



Figure 5: Visualization of the results on Stanford-2D-3D dataset. For six random images from the test set, we show the
input panorama, ground-truth annotation, raw depth map and the five-scale quantized depth map in the leftmost two columns.
Then, we show the segmentation prediction and the attention map using our unsupervised attentional mechanism in the third
column. In the remaining three columns, we show the output of our depth-aware adaptation over each iteration of recurrent
refinement, from loop-0 to loop-2. Note that the more yellowish the color is, the further away the object is to camera and the
finer scale of the feature maps the model adopts to process. From the visualization, we can see 1) the attention map helps
the model avoid pooling across semantic segments by using smaller pooling near boundaries; 2) the depth-adaptation in the
recurrent refinement loops behave in a coarse-to-fine manner with smaller receptive fields used in later iterations due to the
top-down signal from earlier semantic predictions.


