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1. Image Processing Operators
1.1. Details of Each Operators

L0 smoothing. L0 smoothing [18] is effective for sharp-
ening major edges by increasing the steepness of transition
while eliminating a manageable degree of low-amplitude
structures. Such an operator makes use of L0 gradient min-
imization, which can identify the most important edges by
penalizing the number of non-zero gradients in the image.

For generating the ground truth images, we use
the official implementation of [18] with the de-
fault parameters, which could be downloaded from
http://www.cse.cuhk.edu.hk/˜leojia/
projects/L0smoothing.

Multiscale detail manipulation. Multiscale detail ma-
nipulation (multiscale tone manipulation) [8] enhances an
image by boosting features at multiple scales, which utilizes
edge-preserving multiscale image decomposition based on
the weighted least squares optimization framework.

Given an image, a three-level decomposition (coarse
base level b and two detail levels d1, d2) of the CIELAB
lightness channel is first constructed. The resulting image of
manipulation can be then constructed by a non-linear com-
bination of b, d1 and d2.

To generate the ground truth images, the official imple-
mentation of [8] is used, which could be obtained from
http://www.cs.huji.ac.il/˜danix/epd. We
first generate coarse-scale, medium-scale, and fine-scale
images with the default parameters. The final output is then
yielded by averaging the three images.

Style transfer. Style transfer aims at transferring the pho-
tographic style of a reference image to the input image. We
utilize the algorithm proposed by Aubry et al. [2] to gener-
ate ground truth images. Such an algorithm seeks to match
both the global contrast and the local contrast between the
reference image and the input image iteratively, alternating
between local Laplacian filtering and histogram matching.

The official implementation of [2] is used
with the default setting and the default style im-
age. The code could be downloaded from http:

//www.di.ens.fr/˜aubry/code/matlab_
fast_llf_and_style_transfer.zip. The re-
sulted images are grey ones, but we treat them as RGB
images and design the network to generate outputs with
three channels.

Nonlocal dehazing. The goal of image dehazing is to re-
move some of the effects of atmospheric absorption and
scattering. Recently, Berman et al. [3] propose a dehazing
technique that uses a nonlocal prior, named nonlocal dehaz-
ing. The algorithm could recover both the distance map and
the haze-free image based on haze-lines.

We use the official implementation of [3] with default
parameters to generate ground truth images. Such an imple-
mentation could be obtained from https://github.
com/danaberman/non-local-dehazing. There
are not too many images with heavily haze in MIT-Adobe
FiveK dataset [4]. However, we find that the algorithm of
[3] could enhance the visibility and contrast of all kinds
of images, which enables the usage of the whole training
dataset.

Image retouching. The MIT-Adobe FiveK dataset [4]
contains 5,000 photos with the corresponding retouched im-
ages from five experts. We use the retouched images from
expert A as the ground truth. This task measures the ability
of the proposed model to learn a highly subjective image
operator that requires a significant amount of learning and
semantic reasoning.

1.2. Details of Dataset

The MIT-Adobe FiveK dataset [4] together with the
official training/test split could be found in http://
people.csail.mit.edu/vladb/photoadjust/.

1.3. Details of DGF

The architecture of Cl(Il). We deploy Context Aggre-
gation Network (CAN) proposed by Chen et al. [6] as the
default architecture of Cl(Il) for all the five operators. The
resolution of both input images and output images is fixed at
64s with three channels. The concrete architecture is shown
in Table 1. For all convolution layers, the stride is set to 1,
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Cl(Il) F (I)
Layer 1 2 3 4 5 6 7 8 1 2
Convolution 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 1 × 1 3 × 3 1 × 1
Channel 24 24 24 24 24 24 24 3 15 3
Dilation 1 1 2 4 8 16 1 1 1 1
Bias 7 7 7 7 7 7 7 X 7 X
AdaptNorm X X X X X X X 7 X 7
Nonlinearity X X X X X X X 7 X 7

Table 1: The architecture of Cl(Il) and F (I) for image processing operators.

while the padding size is set to ensure the size of output fea-
tures unchanged. Following each convolution layer, a vari-
ant of batch normalization i.e. adaptive normalization [6]
and a nonlinearity activation function leaky ReLU are ap-
plied. The negative slope of leaky ReLU is set to 0.2 by
default.

The architecture of F (I). The architecture of F (I) is de-
scribed in Table 1. The channel size of both input images
and output images is 3.

The algorithm of guided filtering layer. The entire algo-
rithm is shown in Algorithm 1. Box filter is used for imple-
ment fmean as proposed by He et al. [12].

2. Computer Vision Tasks
2.1. Introduction to Each Task

Depth estimation from a single image. Depth estimation
from a single image is first proposed by Saxena et al. [17],
which aims at predicting the depth at each pixel of an im-
age with monocular cues, such as texture variations, texture
gradients, occlusion, known object sizes, haze, defocus, etc.

Saliency Object Detection. Saliency object detection is
used to detect the most salient object in an input image,
which is formulated as an image segmentation problem by
Liu et al. [16]. They try to separate the salient object from
the image background with multi-scale contrast, center-
surround histogram, and spatial color distribution.

Semantic Segmentation. The task of semantic segmen-
tation is labeling images, in which each pixel is assigned
to one of a finite set of labels. It’s first proposed by He et
al. [13], which is solved by combining local and global in-
formation in a probabilistic framework.

2.2. Dataset for Each Task

Depth estimation from a single image. KITTI [9] con-
tains 42,382 rectified stereo pairs from 61 scenes, with a

Algorithm 1: Guided Filtering Layer for Image Pro-
cessing, adapted from [12]

Input : Low-resolution image Il
High-resolution image Ih
Low-resolution output Ol
Radius r and Regularization term ε

Output: High-resolution output Oh
1 Gl = F (Il) Gh = F (Ih)
2 Ḡl = fµ(Gl, r)

Ōl = fµ(Ol, r)

G2
l = fµ(Gl ∗Gl, r)

GlOl = fµ(Gl ∗Ol, r)
3 ΣGl

= G2
l − Ḡl ∗ Ḡl

ΣGlOl
= GlOl − Ḡl ∗ Ōl

4 Al = ΣGlOl
/(ΣGl

+ ε)

bl = Ōl −Al ∗ Ḡl
5 Ah = f↑(Al) bh = f↑(bl)
6 Oh = Ah ∗Gh + bh

typical image being 1242 × 375 pixels in size. We test on
the 200 high quality disparity images provided as part of
the official KITTI training set, which covers a total of 28
scenes. The remaining 33 scenes contain 30,159 images
from which we keep 29,000 for training and the rest for
evaluation. The list of training and test images is available at
https://github.com/mrharicot/monodepth.

Saliency Object Detection. We use MSRA-B [15] for
our experiment, which contains 5000 images with a
large variation, including natural scenes, animals, in-
door, outdoor, etc. The official training, validation
and test split described in [15] is used, which could
be obtained from https://people.cs.umass.edu/

˜hzjiang/drfi/.

Semantic Segmentation. The PASCAL VOC 2012 seg-
mentation benchmark [7] involves 20 foreground object
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Layer Convolution Dilation ReLU Channel
1 1 × 1 1 X 64
2 1 × 1 1 7 nO

Table 2: The architecture of F (I) for computer vision
tasks. nO represents the channel size of target images.

1st guided filter 2nd guided filter
Parameters r ε r ε
Depth 4 1e-2 - -
Saliency 8 1e-2 8 1e-2
Segmentation 4 1e-2 - -

Table 3: The parameters of guided filtering layer for
each task.

classes and one background class. The original dataset con-
tains 1464, 1449 and 1456 pixel-level labeled images for
training, validation and test respectively. The dataset is aug-
mented by the extra annotations provided by [11], resulting
in 10582 training images. We use the 10582 augmented im-
ages for training while using the 1449 validation images for
test. 50 images from the training set are used for tuning
hyper-parameters.

2.3. Details of DGF

Details of Cl(Il). The network architectures we used for
each task are described in main text. The input images to
Cl(Il) is at high-resolution, while the output is also a high-
resolution one after bilinear upsampling or deconvolution
layers, noted as O↑.

Details of F (I). The architecture of F (I) is shown as Ta-
ble 2.

Details of guided filtering layer. We adapt guided filter-
ing layer to computer vision tasks as shown in Algorithm 2.
For DGFs, guided filter is applied as post-processing opera-
tion, while F (I) is defined as the summation of RGB chan-
nels pixel-wisely, noted as FRGB(I). For DGF, the guided
filtering layer is jointly trained with the entire network.

For each task, the values of r and ε are determined by
grid search on the validation set with DGFs, we then use
the same parameters to train DGF. The concrete configura-
tions are shown in Table 3. For saliency detection, a second
guided filter is applied to both DGFs and DGF for better
results.

2.4. Training Details

For depth estimation from a single image, we follow the
same training and test procedures as MonoDepth [1] with

Algorithm 2: Guided Filtering Layer for Computer Vi-
sion, adapted from [12]

Input : High-resolution image Ih
High-resolution output O↑
Radius r and Regularization term ε

Output: Improved High-resolution output Oh
1 Gh = F (Ih)
2 Ḡh = fµ(Gh, r)

Ō↑ = fµ(O↑, r)

G2
h = fµ(Gh ∗Gh, r)

GhO↑ = fµ(Gh ∗O↑, r)

3 ΣGh
= G2

h − Ḡh ∗ Ḡh
ΣGhO↑ = GhO↑ − Ḡh ∗ Ō↑

4 Āh = ΣGhO↑/(ΣGh
+ ε)

b̄h = Ō↑ − Āh ∗ Ḡh
5 Ah = fµ(Āh, r) bh = fµ(b̄h, r)
6 Oh = Ah ∗Gh + bh

the official implementation 1 and default settings.
For salient object detection, we reimplement DSS [14]

with PyTorch and release the code in https://
github.com/wuhuikai/DeepGuidedFilter.

For semantic segmentation, DeepLab-v2 [5] in Py-
Torch with Resnet as the backbone is deployed.
We follow the same training and test protocols as
described in https://github.com/isht7/
pytorch-deeplab-resnet.

2.5. Other Details.

For saliency object detection, a threshold is first deter-
mined on the validation set and then is used to turn the out-
put into binary one for visualization.
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Input Ground Truth DGF (ours) CAN [6] DBL [10]

Figure 1: Qualitative Results for L0 smoothing [18]. Best viewed in color.



Input Ground Truth DGF (ours) CAN [6] DBL [10]

Figure 2: Qualitative Results for multiscale detail manipulation [8]. Best viewed in color.



Input Ground Truth DGF (ours) CAN [6] DBL [10]

Figure 3: Qualitative Results for photographic style transfer [2]. Best viewed in color.



Input Ground Truth DGF (ours) CAN [6] DBL [10]

Figure 4: Qualitative Results for non-local dehazing [3]. Best viewed in color.



Input Ground Truth DGF (ours) CAN [6] DBL [10]

Figure 5: Qualitative Results for image retouching learning from human annotations [4]. Best viewed in color.



Input Ground Truth DGF (ours) Baseline

Figure 6: Qualitative Results for depth estimation from a single image [17]. Best viewed in color.



Input Ground Truth DGF (ours) Baseline

Figure 7: Qualitative Results for saliency object detection [16]. Best viewed in color.



Input Ground Truth DGF (ours) Baseline

Figure 8: Qualitative Results for semantic segmentation [13]. Best viewed in color.
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