
CSGNet: Neural Shape Parser for Constructive Solid Geometry
Supplementary Material

1. Supplementary

In this supplementary material, we include the following
topics in more detail: a) synthetic dataset creation in the 2D
and the 3D case, b) neural network architecture used in our
experiments, c) more qualitative results on our test dataset.

1.1. Dataset

Synthetic 2D shapes. We use the grammar described in
the Section 4.1 to create our 2D dataset. The dataset is cre-
ated by randomly generating programs of lengths 3 to 13
following the grammar. While generating these programs
we impose additional restrictions as follows: a) Primitives
must lie completely inside the canvas, b) Each operation
changes the number of ON pixels by at least a threshold set
to 10% of sum of pixels in two shapes. This avoids spu-
rious operations such as subtraction between shapes with
little overlap. c) The number of ON pixels in the final im-
age is above a threshold. d) The previous rules promotes
programs with the union operation. To ensure a balanced
dataset we boost the probabilities of generating programs
with subtract and intersect operations. Finally we remove
duplicates. We only use upright, equilateral triangles and
upright squares. Note that locations (L) are discretized to
lie on square grid with spacing of 8 units and size (R) are
discretized with spacing of 4 units. Figure 1 shows exam-
ples from our dataset.

Synthetic 3D shapes. We use the grammar described in
the Section 4.1 to create our 3D dataset. While generat-
ing shapes we followed a strategy similar to the 2D case.
For 3D case, we only use programs of up to length 7 (up
to 4 shape primtives and upto 3 boolean operations). Note
that the cube and cylinder are upright. The dataset contains
64 × 64 × 64 voxel-grid shapes and program pairs. Also
note that locations (L) are discretized to lie on cubic grid
with spacing of 8 units, and size (R) and height (H) are dis-
cretized with spacing of 4 units.

CSG execution engine. We implemented a CSG engine
that reads the instructions one by one. If it encounters a
primitive (e.g. c(32, 32, 16)) it draws it on an empty

Figure 1. Random samples from our synthetic 2D dataset.

Layers Output
Input image 64× 64× 1
Dropout(Relu(Conv: 3× 3, 1→ 8)) 64× 64× 8
Max-pool(2× 2) 32× 32× 8
Dropout(Relu(Conv: 3× 3, 8→ 16)) 32× 32× 16
Max-pool(2× 2) 16× 16× 16
Dropout(Relu(Conv: 3× 3, 16→ 32)) 16× 16× 32
Max-pool(2× 2) 8× 8× 32
Flatten 2048

Table 1. Encoder architecture for 2D shapes experiments. The
same architecture is used in all experiments in the Section 4.3.1.

canvas and pushes it on to a stack. If it encounters an op-
eration (e.g. union, intersect, or subtract) it pops
the top two canvases on its stack, applies the operation to
them, and pushes the output to the top of the stack. The
execution stops when no instructions remain at which point
the top canvas represents the result. The above can be seen
as a set of shift and reduce operations in a LR-parser [1].
Figure 2 describes execution procedure to induce programs
for 3D shapes.

1.2. Network Architecture

Architecture for 2D shape experiments. Table 1 shows
the CNN architecture used as the encoder. The input I is an
image of size 64 × 64 and output Φ(I) is a vector of size
2048. Table 2 describes the architecture used in the decoder.
The RNN decoder is based on a GRU unit that at every time
step takes as input the encoded feature vector and previous
instruction encoded as a 128 dimensional vector obtained

1



Figure 2. Detailed execution procedure followed by an induced CSG program in a characteristic 3D case. The input is a voxel based
representation of size 64 × 64 × 64. The RNN decoder produces a program, which can be executed following the grammar described in
the Section 1.1, to give the output shown at the bottom. The user-level program is shown for illustration. On the right side is shown a parse
tree corresponding to the execution of the program.

by a linear mapping of the 401 dimensional one-hot vector
representation. At first time step, the previous instruction
vector represents the START symbol. Embedded vector of
previous instruction is concantenated with Φ(I) and is in-
put to the GRU. The hidden state of GRU is passed through
two dense layer to give a vector of dimension 400, which
after softmax layer gives a probability distribution over
instructions. The output distribution is over 396 different
shape primitives, 3 operations (intersect, union and
subtract) and a STOP. We exclude the START symbol
from the output probability distribution. Note that the cir-
cle, triangle or square at a particular position in the image

and of a particular size represents an unique primitive. For
example, c(32, 32, 16), c(32, 28, 16), s(12, 32, 16) are dif-
ferent shape primitives.

Architecture for 3D shape experiments. Input to 3D
shape encoder (3DCNN) is a voxel grid I of size 64 x 64
x 64 and outputs an encoded vector Φ(I) of size 2048, as
shown in the Table 3. Similar to the 2D case, at every
time step, GRU takes as input the encoded feature vector
and previous ground truth instruction. The previous ground
truth instruction is a 6636-dimensional (also includes the
start symbol) one-hot vector, which gets converted to a



Index Layers Output
1 Input shape encoding 2048
2 Input previous instruction 401
3 Relu(FC (401→ 128)) 128
4 Concatenate (1, 3) 2176
5 Drop(GRU (hidden dim: 2048)) 2048
6 Drop(Relu(FC(2048→ 2048))) 2048
7 Softmax(FC(2048→ 400)) 400

Table 2. Decoder architecture for 2D shapes experiments. The
same architecture is used for all experiments in the Section 4.3.1.
FC: Fully connected dense layer, Drop: dropout layer with 0.2
probability. Dropout on GRU are applied on outputs but not on
recurrent connections.

Layers Output
Input Voxel 64 × 64 × 64 × 1
Relu(Conv3d: 4 × 4 × 4, 1→ 32) 64 × 64 × 64 × 32
BN(Drop(Max-pool(2 × 2 × 2))) 32 × 32 × 32 × 32
Relu(Conv3d: 4 × 4, 32→ 64) 32 × 32 × 32 × 64
BN(Drop(Max-pool(2 × 2 × 2))) 16 × 16 × 16 × 64
Relu(Conv3d: 3 × 3, 64→ 128)) 16 × 16 × 16 × 128
BN(Drop(Max-pool(2 × 2 × 2))) 8 × 8 × 8 × 128
Relu(Conv3d: 3 × 3, 128→ 256)) 8 × 8 × 8 × 256
BN(Drop(Max-pool(2 × 2 × 2))) 4 × 4 × 4 × 256
Relu(Conv3d: 3 × 3, 256→ 256)) 4 × 4 × 4 × 256
BN(Drop(Max-pool(2 × 2 × 2))) 2 × 2 × 2 × 256
Flatten 2048

Table 3. Encoder architecture for 3D shape experiments. Drop:
dropout layer, BN: batch-normalization layer and Drop: dropout
layer with 0.2 probability.

Index Layers Output
1 Input shape encoding 2048
2 Input previous instruction 6636
3 Relu(FC(6636→ 128)) 128
4 Concatenate (1, 3) 2176
5 Drop(GRU (hidden dim: 1500)) 1500
6 Drop(Relu(FC(1500→ 1500))) 1500
7 Softmax(FC(1500→ 6635)) 6635

Table 4. Decoder network architecture for 3D shapes experi-
ments. FC: Fully connected dense layer, Drop: dropout layer with
0.2 probability. Dropout on GRU are applied on outputs but not
on recurrent connections.

fixed 128-dimensional vector using a learned embedding
layer. At first time step the last instruction vector rep-
resents the START symbol. Embedded vector of previ-
ous instruction is concatenated with Φ(I) and is input to
the GRU. The hidden state of GRU is passed through two
dense layers to give a vector of dimension 6635, which af-
ter Softmax layer gives a probability distribution over in-
structions. The output distribution is over 6631 different
shape primitives, 3 operations (intersect, union and

subtract) and a STOP. We exclude the START symbol
from the output probability distribution. Similar to 2D case,
cu(32, 32, 16, 16), cu(32, 28, 16, 12), sp(12, 32, 16, 28) are
different shape primitives. Table 4 shows details of decoder.

1.3. Qualitative Evaluation

In this section, we show more qualitative results on dif-
ferent dataset. We first show peformance of our CSGNet
trained using only Supervised learning on 2D synthetic
dataset, and we compare top-10 results from nearest neigh-
bors and and top-10 results from beam search, refer to the
Figure 3 and 4. Then we show performance of our full
model (using RL + beam search + visually guided search)
on CAD 2D shape dataset, refer to the Figure 5 and 6.

References
[1] D. E. Knuttt. On the translation of languages from left to right. 1



Figure 3. Qualitative evaluation on 2D synthetic dataset. In green outline is the groundtruth, top row represent top-10 beam search
results, bottom row represents top-10 nearest neighbors.



Figure 4. Qualitative evaluation on 2D synthetic dataset. In green outline is the groundtruth, top row represent top-10 beam search
results, bottom row represents top-10 nearest neighbors.



Figure 5. Performance of our full model on 2D CAD images. a) Input image, b) output from our full model, c) Outlines of primitives
present in the generated program, triangles are in green, squares are in blue and circles are in red d) Predicted program. s, c and t are shape
primitives that represents square, circle and triangle respectively, and union, intersect and subtract are boolean operations.



Figure 6. Performance of our full model on 2D CAD images. a) Input image, b) output from our full model, c) Outlines of primitives
present in the generated program, triangles are in green, squares are in blue and circles are in red d) Predicted program. s, c and t are shape
primitives that represents square, circle and triangle respectively, and union, intersect and subtract are boolean operations.


