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Despite their impressive predictive power on a wide
range of tasks [6, 3, 5, 8], the redundancy in the param-
eterization of deep learning models has been studied and
demonstrated [2]. We present NISP to efficiently propagate
the importance scores from final responses to all other neu-
rons to guide network pruning to achieve acceleration and
compression of a deep network. In the supplementary ma-
terials, we show details on how to propagate neuron im-
portance from the final response layer, and some additional
experiments.

1. Neuron Importance Score Propagation
(NISP)

Given the importance of a neuron, we first identify the
positions in the previous layer that are used as its input,
then propagate the importance to the positions proportional
to the weights. We only propagate the importance of the
selected feature extractors to the previous layers and ignore
the pruned ones. The NISP process can be divided into three
classes: from a 1-way tensor to a 1-way tensor, e.g. between
FC layers; from a 1-way tensor to a 3-way tensor, e.g., from
an FC layer to a conv/pooling layer; from a 3-way tensor to
a 3-way tensor, e.g., from a pooling layer to a conv layer.

We simplify NISP by ignoring the propagation of bias.

2. NISP: from 1-way tensor to 1-way tensor
Given an FC layer with M input neurons and N output

neurons, the N -by-1 importance vector (S) of the output
feature is SFCout = [SFCout1, SFCout2 . . . SFCoutN ]

T. We
use WFC ∈ RM×N to denote the weights of the FC layer.
The importance vector of the input neurons is:

SFCin
= |WFC| · SFCout , (1)

∗This work was done while the author was at the University of Mary-
land.
†This work was done while the author was at IBM.

where | · | is element-wise absolute value.

3. NISP: from 1-way tensor to 3-way tensor
Given an FC layer with a 3-way tensor as input and N

output neurons, the input has a size of X ×X × C, where
X is the spatial size and C is the number of input channels.
The input can be the response of a convolutional layer or a
pooling layer. We use WFC ∈ R(X2×C)×N to denote the
weights of the FC layer. The flattened importance vector
Sin ∈ R(X2×C)×1 of the input tensor is:

Sin = |WFC| · SFCout . (2)

4. NISP: from 3-way tensor to 3-way tensor
4.0.1 Convolution Layer.

We derive NISP for a convolutional layer, which is the most
complicated case of NISP between 3-way tensors. NISP for
pooling and local response normalization (LRN) can be de-
rived similarly.

For a convolutional layer with the input 3-way ten-
sor convin ∈ RX×X×N and output tensor convout ∈
RY×Y×F ), the filter size is k, stride is s and the number of
padded pixels is p. During the forward propagation, convo-
lution consists of multiple inner products between a kernel
kf ∈ Rk×k×N , and multiple corresponding receptive cubes
to produce an output response. Fixing input channel n and
output channel f , the spatial convolutional kernel is kfn.
For position i in the nth channel of the input tensor, the cor-
responding response of the output channel f at position i is
defined as Equation 3:

Rf (i) =
∑
n

kfn · in(i), (3)

where in(i) is the corresponding 2-D receptive field. Given
the importance cube of the output response Sout ∈



Algorithm 1 NISP: convolutional layer
1: Input : weights of the conv layer W ∈ RX×X×N×F

2: , flattened importance of the f th output channel
3: Sf

out ∈ R1×(X×X)

4: for n in 1 . . . N do
5: for f in 1 . . . F do
6: kfn ← |W[:, :, n, f ]|
7: Construct BPfn

conv as (5) and (6)
8: Sfn

in ← Sf
out ·BPfn

conv

9: Sn
in ←

∑
f S

fn
in

10: Sin ← [S1
in,S

2
in . . . ,S

N
in]

11: end

RY×Y×F , we use a similar linear computation to propagate
the importance from the output response to the input:

Sn(i) =
∑
f

kfn · Sout(i), (4)

where Sn(i) is the importance of position i in the nth input
channel, and Sout(i) is the corresponding 2-D matrix that
contains the output positions whose responses come from
the value of that input position during forward propagation.
We propagate the importance proportionally to the weights
as described in Algorithm 1.

The propagation matrices used in algorithm 1 are defined
in (5) and (6)

BPfn
conv =


bfn
1 . . . bfn

j . . . bfn
k

bfn
1 . . . bfn

j . . . bfn
k

...

bfn
1 . . . bfn

j . . . bfn
k

 ,

(5)
where bi

c is the building block of size Y ×X defined as:

bfn
i =


kfn[i, 1] . . . . . .kfn[i, k]

kfn[i, 1] . . . . . .kfn[i, k]

...
kfn[i, 1] . . . . . .kfn[i, k]

 , (6)

Equation 4 implies that the propagation of importance
between 3-way tensors in convolutional layers can be de-
composed into propagation between 2-D matrices. Fixing
the input channel n and the output channel f , the input layer
size is X ×X and the output size is Y × Y . Given the flat-
tened importance vector Sout

f ∈ R1×(Y×Y ) of the output
layer, the propagation matrix BPfn

conv ∈ R(Y×Y )×(X×X)

is used to map from Sout
f to the importance of input layer

Sin
fn ∈ R1×(X×X). BPfn

conv(i, j) 6= 0, implies that the ith
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Figure 1. importance propagation: Convolutional layer. X =
4, Y = 2, k = 3, s = 1. Fixing the f th input channel and cth out-
put channel, the upper-left X-by-X grid is the corresponding input
feature map, and the upper-right Y-by-Y grid is the output map
after convolution is applied. kfc is the corresponding 2D convolu-
tional kernel. Given the flattened importance vector for the output
feature map Sout

f,c, we use BPconv to propagate the importance
and obtain Sin

f,c, which contains the importance of the input fea-
ture map. The structure of BPconv is determined by the kernel
size k and stride s.

position in the output layer comes from a convolution oper-
ation with the jth position in the input layer, and we prop-
agate the importance between the two positions. We use a
Y ×X matrix bfn

i to represent the mapping between a row
in the output layer to the corresponding row in the input
layer. In each row of bfn

i , there are k non-zeros since each
position in the output layer is obtained from a region with
width k of the input layer. The non-zeros of each row of bfn

i

are the ith row of the convolutional kernel kfn. The offset
of the beginning of the weights in each row is the stride
s. The entire propagation matrix BPfn

conv is a block matrix
with each submatrix being a Y ×X matrix of either bfn

i or
a zero matrix. Each row of BPfn

conv has bfn
1 to bfn

k because
the height of a convolutional kernel is k. The offset of the
beginning of the bs in each row of BPfn

conv is the stride s.
We use the case when X = 4, Y = 2, k = 3, s = 1 as an
example shown in Figure 1.

4.0.2 Pooling Layer.

Assume a pooling layer with input tensor of size X×X×F
and output size Y × Y × F . The pooling filter size is k and
the stride is s. The basic idea of most pooling techniques is
the same: use a fixed 2-dimensional filter to abstract local
responses within each channel independently. For example,
in max pooling each output response consists of the max of
k×k values from the input responses. Due to the large vari-
ance of input data, it is safe to assume a uniform distribution
on which value within the receptive field is the largest is a
uniform distribution. Consequently, for an output response



location, the contributions from the corresponding k×k val-
ues of the input response are equal. Since pooling is a spa-
tial operation that does not cross channels, we can propagate
the importance of each channel independently. Given a flat-
tened importance vector of a channel f Sout

f ∈ R1×(Y×Y )

of the output 3-way tensor, the flattened importance vector
of the input tensor is calculated as:

Sin
f = Sout

f ·BPpooling, (7)

where BPpooling is the back-propagation matrix of size
Y 2 ×X2 defined as:

BPpooling =


bp . . . bp . . . bp

bp . . . bp . . . bp

...
bp . . . bp . . . bp

 , (8)

where bp is the building block of size Y ×X defined as:

bp =


1 . . . 1 . . . 1

1 . . . 1 . . . 1

...
1 . . . 1 . . . 1

 , (9)

Consider one channel with input size X × X and the
output size Y × Y . Given the flattened importance vector
Sout

f ∈ R1×(Y×Y ) of the output layer, the propagation
matrix BPpooling ∈ R(Y×Y )×(X×X) is used to map from
Sout

f to the importance of input layer Sin
f ∈ R1×(X×X).

If BPpooling(i, j) = 1, the ith position in the output layer
comes from a pooling operation and involves the jth po-
sition in the input layer, so we propagate the importance
between the two positions. We use a Y × X matrix bp to
represent the mapping between a row in the output layer
to the corresponding row in the input layer. In each row of
bp, there are k 1′s since each element in the output layer is
pooled from a region with width k of the input layer. The
offset of the beginning of the 1′s is the stride s. The entire
propagation matrix BPpooling is a block matrix with each
submatrix being a Y ×X matrix of either bp or a zero ma-
trix. Each row of BPpooling has k bps because the height
of pooling filter is k. The offset of the beginning of the k
bps is the stride s. The ones in bp will be normalized by the
number of positions covered by a pooling filter (the same
for LRN layers shown below). The other elements are all
zeros. We use the case that X = 4, Y = 2, k = 2, s = 2 as
an example shown in Figure 2.

4.0.3 Local Response Normalization Layer.

Krizhevsky et al. [4] proposed Local Response Normal-
ization (LRN) to improve CNN generalization. For cross-
channel LRN, sums over adjacent kernel maps at the same
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Figure 2. NISP: Pooling layer. X = 4, Y = 2, k = 2, s = 2. The
upper-left X-by-X grid is the f th feature map of the input channel,
and the upper-right Y-by-Y grid is the output channel after pooling
is applied. Given the importance vector Sout

f , we use BPpooling

to propagate the importance and obtain Sin
f , which contains the

importance of each position of the input feature map. The structure
of BPpooling relates to the kernel size k and stride s.

spatial position produce a response-normalized activation at
that position. Since LRN is a non-linear operation, it is in-
tractable to conduct exact importance propagation between
the input and output tensors. One way to approximate prop-
agation is to assume the kernel maps at one spatial position
contribute equally to the response at that position of the out-
put tensor when considering the large variance of the input
data. Then, given the X × X × N importance tensor for
the response of a LRN layer with local size = l, which
is the number of adjacent kernel maps summed for a spa-
tial position, considering all N channels of a spatial posi-
tion (i, j), the importance vector of that spatial position is
Sij
out ∈ R1×N . The corresponding importance vector of the

input Sij
in ∈ R1×N is:

Sij
in = Sij

out ·BPLRN , (10)

where BPLRN ∈ RN×N is defined as:

BPLRN =



1 1 · · · 1
1 1 · · · 1 1
· · · · · ·
1 1 · · · 1 1 · · ·
1 · · · 1 1 · · · 1

· · · 1 1
1 1 · · · · · · · · ·
1 · · · 1 1 · · · 1

1 1 · · · 1 1
· · · · ·
1 1 · · · 1 1

1 · · · 1 1


. (11)

For a cross-channel LRN, the output response tensor has
the same shape as the input. For a spatial position (i, j) of
the output tensor, given its importance vector Sij

out, we con-
struct a N × N symmetric matrix BPLRN to propagate
its importance to the corresponding input vectorSij

in at that
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Figure 3. Importance propagation: LRN layer (cross-channel).
l = 3, N = 5. The red vector is the cross-channel vector at spa-
tial position (i, j) of the input tensor, and the yellow vector is the
cross-channel vector at the same position of the output tensor after
LRN is applied. Given the Sout

ij , we use BPLRN to propagate
the importance and obtain Sin

ij , which contains the importance of
each position of the input feature map. The structure of BPLRN

relates to the local size l and number of channels N.

position. Since the center of the LRN operation is at po-
sition (i, j), the operation will cover l+1

2 positions to the
left and right. When the operation is conducted on the po-
sitions at the center of the vector Sij

out (from column l+1
2

to N - l+1
2 + 1), the operation covers l cross-channel posi-

tion so that the corresponding columns in BPLRN have l
1’s. When the LRN operation is conducted at the margin of
the vector, there are missing cross-channel positions so that
from column l+1

2 to column 1 (similar for the right-bottom
corner), the 1’s in the corresponding column of BPLRN de-
creases by 1 per step from the center to the margin. We use
the case when l = 3, N = 5 as an example of LRN layer
with cross-channel in Figure 3.

For within-channel LRN, following our equal distribu-
tion assumption, the importance can be propagated simi-
larly as in a pooling layer.

5. Experiments

6. PCA Accumulated Energy Analysis

One way to guide the selection of pruning ratio is the
PCA accumulated energy analysis [9] on the responses of
a pre-pruned layer. The PCA accumulated energy analysis
shows how many PCs it needs for that layer to capture the
majority of variance of the samples, which implies a proper
range of how many neurons/kernels we should keep for that
layer. We show the PCA accumulated energy analysis re-
sults on the last FC layers before the classification part for
LeNet (ip1) and AlexNet (fc7) in Figure 4(a) and 4(b). By
setting variance threshold as 0.95, 120 out of 500 PCs are
required for LeNet, 2234 out of 4096 PCS are required for
AlexNet to capture the variance.
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Figure 4. PCA accumulated energy analysis: LeNet on MNIST
(a) and AlexNet on ImageNet (b). The y axis measures the PCA
accumulated energy. The x axis shows the number of PCs.
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Figure 5. Learning Curves of AlexNet on ImageNet: The sub-
script CF means we prune both convolutional kernels and neurons
in FC layers, and C means we only prune convolutional kernels.
High, Mid and Low mean we prune the entire CNN except for the
high/middle/low level convolutional layers (Conv4-Conv5, Conv3
and Conv1-Conv2 respectively).

7. Experiments on AlexNet: Convolutional
Layers v.s. FC Layers

From the experiments in the main paper, we found that
FC layers have significant influence on accuracy loss, model
size and memory usage. To exploit the impact of prun-
ing FC layers and convolutional layers, we conduct exper-
iments on pruning half of the neurons in FC layers and
some convolutional layers using ImageNet [1]]. We cate-
gorize the 5 convolutional layers into three-level feature ex-
tractors: low (Conv1-Conv2 layers), middle (Conv3 layer)
and high (Conv4-Conv5 layers). Figure 5 displays learning
curves and shows that although FC layers are important in
AlexNet, powerful local feature extractors (more kernels in
convolutional layers) can compensate the loss from prun-
ing neurons in FC layers, or even achieve better predictive
power (High and Low curves).
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Figure 6. Learning Curves of GoogLeNet on ImageNet: The prun-
ing ratio is 50%. We prune all layers but the reduction layers in the
inception modules. importance based pruning method converges
much faster and can achieve the smallest accuracy loss.

8. Experiments on GoogLeNet

The learning curves for “no Reduce” of GoogLeNet [7]
is shown in Figure 6. We observe that our importance based
pruning method leads to better initialization, faster conver-
gence and smaller final accuracy loss.

9. Layer-wise Improvements

In our experiments of AlexNet on Titan X, the empir-
ical computation time for the intermediate layers (all lay-
ers except for convolutional layers and FC layers) accounts
for 17% of the entire testing time; therefore, those layers
must be considered as well while designing an accelera-
tion method. One of our advantages over existing methods
is that all layers in the network can be sped up due to the fact
that the data volume or feature dimension at every layer is
reduced. For example, by pruning kernels in convolutional
layers, we reduce the number of both output channels of the
current layer and input channels of the next layer. In the-
ory, given a pruning ratio of 50%, except for the first layer
whose input channels cannot be pruned, all of the convolu-
tional layers can be sped up by 4×. The intermediate pool-
ing, non-linearity and normalization layers have a theoret-
ical speedup ratio of around 2×. The layer-wise accelera-
tion ratios (both theoretical and empirical) of our method
when the pruning ratio is 50% for both convolutional layers
and FC layers are shown in Figure 7. We observe that the
theoretical and empirical speedup are almost the same for
pooling, non-linearity and normalization.
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Figure 7. Full-Network Acceleration of AlexNet: Pruning Half of
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