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1. Network Architecture of Hand Pose Regres-
sion Network

We present the detailed network architecture of the hand
pose regression network in Figure 1, which is based on the
architecture of hierarchical PointNet proposed in [7]. As
can be seen, the hand pose regression network has three set
abstraction levels. At the [-th level (I = 1,2), N, points are
sampled using iterative farthest point sampling and k near-
est neighboring points of each sampled point are grouped as
a local region. Following [7], we search nearest points that
are within a radius to the query point in the Euclidean space.
After the process of sampling and grouping, we get N; lo-
cal regions. Each local region containing & points is fed
into a basic PointNet [6] to extract a Cj-dim local feature.
The output data size of this level is V; x C;. The Cj-dim
local features together with the d-dim coordinates of the IV;
sampled points are input to the next level. At the 3" level,
all the input points of this level are fed into a basic Point-
Net to extract a C'3-dim global feature. The global feature
is mapped to an F'-dim output vector through a multi-layer
perceptron (MLP) network.

Each MLP network in Figure 1 is composed of several
fully connected layers. All fully connected layers are fol-
lowed by batch normalization and ReLU except for the last
layer of the last MLP network. We do not use dropout layer
in our implementation.

2. Additional Experiments
2.1. Impact of Surface Normal

We evaluate the impact of surface normal on estimation
errors. As shown in Figure 2, using surface normal as the
input feature will improve the performance a little bit. We
also experiment with approximating surface normal using
different numbers (k) of nearest neighboring points. As can
be seen, our method is not sensitive to the procedure of sur-
face normal approximation.
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Figure 1: Network architecture of the hand pose regres-
sion network which is based on the hierarchical Point-
Net [7]. Numbers in parentheses of MLP networks are
layer sizes. In our implementation, N = 1024, N; = 512,
Ny =128, k=64, D=6, d=3, C; =128, C5 = 256,
C3 =1024. We set the dimension of output vector as
F=2xM<3x M, where M is the number of hand
joints, 3 x M is the dimension of hand joint locations.

2.2. Impact of Fingertip Refinement

As shown in Table 1, the improvement of fingertip refine-
ment on overall mean error is small (0.1mm~0.3mm), since
the five fingertips only take a small part of all the joints.
Moreover, without the fingertip refinement, our method can
still achieve state-of-the-art performance on all the three
datasets.

In addition, we use the estimation results of other meth-
ods as initial estimations for fingertip refinement. As shown
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Figure 2: The impact of surface normal on the proportion
of good frames (NYU [10] dataset). Mean errors are shown
in parentheses.

Table 1: The impact of fingertip refinement on NYU [10],
MSRA [8] and ICVL [9] datasets.

Mean Error on All Joints Mean Error on 5 Fingertips

w/o Refine. with Refine. w/o Refine. with Refine.
NYU [10] 10.8mm 10.5mm 13.9mm 13.Imm
MSRA [8] 8.6mm 8.5mm 11.4mm 10.7mm
ICVL [9] 7.2mm 6.9mm 8.9mm 8.0mm

Table 2: The impact of our fingertip refinement using
estimation results of other methods as initial estimations
(NYU [10] dataset).

Mean Error on All Joints Mean Error on 5 Fingertips

w/o Refine. with Refine. w/o Refine. with Refine.
3D CNN [2] 14.Imm 13.5mm 18.7mm 16.9mm
DeepPrior++ [4] 12.3mm 11.8mm 16.1mm 14.7mm
Pose-REN [1] 11.8mm 11.6mm 14.7mm 14.1mm

in Table 2, our fingertip refinement method can also im-
prove fingertip estimations of other methods evidently, and
slightly improve the mean error on all joints.

2.3. Additional Comparison with State-of-the-arts

In order to make a fair comparison with the spatial at-
tention network-based hierarchical hybrid method proposed
in [11], we evaluate the proportion of hand joints within d-
ifferent error thresholds on NYU hand pose dataset [10].
Following the experimental setting in [11], we calculate
this evaluation metric on 11 hand joints (removing the palm
joints except the root joint of thumb in the set of original 14
hand joints on NYU dataset).

Experimental results are shown in Figure 3. Apart from
the spatial attention network-based method [11], we al-
so compare our method with DeepPrior [5], 3D CNN [2],
REN [3] and DeepPrior++ [4] methods by using this evalu-
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Figure 3: Comparison with state-of-the-art methods [5, 11,
2, 3, 4] on NYU [10] dataset. The proportions of joints
within different error thresholds are presented in this figure.

ation metric. As can be seen, our method is superior to all
of these methods over all the error thresholds. For example,
when the error threshold is 10mm, the proportion of joints
within this error threshold of our method is about 30% more
than that of the spatial attention network-based method [11],
20% more than that of the 3D CNN-based method [2] and
10% more than that of the DeepPrior++ method [4].

3. More Details on Runtime and Model Size

During the testing stage, the depth image is first convert-
ed to a set of 3D points, from which 1024 points are ran-
domly sampled. Since we use the hierarchical PointNet [7],
the farthest point sampling (FPS) algorithm is applied to
evenly sample 512 and 256 points from the 1024 points for
the first two set abstraction levels. This step including ran-
dom sampling and FPS takes 1.7ms for one frame in aver-
age. The next step is surface normal approximation for the
1024 points, which takes 6.5ms for one frame in average.
These two steps are implemented using C++ with the Point
Cloud Library (PCL). The 3D points attached with surface
normals are then fed into the hand pose regression network
to estimate 3D hand joint locations, which takes 9.2ms for
one frame in average on a single Nvidia GTX1080 GPU
with a batch size 1. For fingertip refinement, neighboring
points search and surface normal approximation take 2.8ms
for one frame in average, and the fingertip refinement net-
work forward propagation takes 0.3ms for one frame in av-
erage on a single Nvidia GTX1080 GPU. The batch size is
equal to the number of straightened fingers for each frame.
Therefore, the total runtime of our method is 20.5ms for one
test frame in average, and the average frame rate is about
48fps.



The number of parameters in the hand pose regression
network is about 2.3 x 10 (2.3M). These parameters are
stored in 32 bit float and the size of parameters is 9.2MB.
The number of parameters in the fingertip refinement net-
work is about 1.4 x 10° (142K). These parameters are
stored in 64 bit double and the size of parameters is 1.1MB.
In total, there are about 2.5 x 10% (2.5M) parameters in
these two networks and the total size of network parame-
ters is 10.3MB.
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