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In this document we provide details of the RegNet and
GeoConGAN networks (Sec. 1), additional quantitative
evaluations (Sec. 2), as well as detailed visualizations of
our CNN RegNet output and final results (Sec. 3)

1. CNN and GAN Details
1.1. GeoConGAN network

Network Design: The architecture of GeoConGAN is
based on the CycleGAN [13], i.e. we train two conditional
generator and two discriminator networks for synthetic and
real images, respectively. Recently, also methods using only
one generator and discriminator for enrichment of synthetic
images from unpaired data have been proposed. Shrivastava
et al. [9] and Liu et al. [5] both employ an L1 loss between
the conditional synthetic input and the generated output (in
addition to the common discriminator loss) due to the lack
of image pairs. This loss forces the generated image to be
similar to the synthetic image in all aspects, i.e. it might hin-
der the generator in producing realistic outputs if the syn-
thetic data is not already close. Instead, we decided to use
the combination of cycle-consistency and geometric consis-
tency loss to enable the generator networks to move farther
from the synthetic data thus approaching the distribution of
real world data more closely while preserving the pose of
the hand. Our GeoConGAN contains ResNet generator and
Least Squares PatchGAN discriminator networks.
Training Details: We train GeoConGAN in Tensorflow [1]
for 20,000 iterations with a batch size of 8. We initialize the
Adam optimizer [4] with a learning rate of 0.0002, β1 =
0.5, and β2 = 0.999.

1.2. RegNet network

Projection Layer ProjLayer: Recent work in 3D body
pose estimation has integrated projection layers to leverage
2D-only annotated data for training 3D pose prediction [2].
Since our training dataset provides perfect 3D ground truth,
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Figure 1: 3D PCK on Dexter+Object. Note that Sridhar et
al. [11] requires RGB-D input, while we use RGB-only.

we employ our projection layer merely as refinement mod-
ule to link the 2D and 3D predictions. We project the in-
termediate relative 3D joint position prediction using ortho-
graphic projection where the origin of the 3D predictions
(the middle MCP joint) projects onto the center of the ren-
dered heatmap. Hence, our rendered heatmaps are also rel-
ative and not necessarily in pixel-correspondence with the
ground truth 2D heatmaps. Therefore, we apply further
processing to the rendered heatmaps before feeding them
back into the main network branch. Note that the rendered
heatmaps are differentiable with respect to the 3D predic-
tions which makes backpropagation of gradients through
our ProjLayer possible.
Training Details: We train RegNet in the Caffe [3] frame-
work for 300,000 iterations with a batch size of 32. We use
the AdaDelta [12] solver with an initial learning rate of 0.1
which is lowered to 0.01 after 150,000 iterations. All layers
which are shared between our network and ResNet50 are
initialized with the weights obtained from ImageNet pre-
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Figure 2: Qualitative results on the Desk sequence from EgoDexter [6]. RegNet output (rows 1,2) and final tracking.

Pr
ed

ic
tio

n
2D

Pr
ed

ic
tio

n
3D

Tr
ac

ke
d

3D
(p

ro
je

ct
ed

)
Tr

ac
ke

d
3D

Tr
ac

ke
d

3D
(z

oo
m

ed
)

Figure 3: Qualitative results on community videos from YouTube. RegNet output (rows 1,2) and final tracking.



training [7]. Both, the 2D heatmap loss and the local 3D
joint position loss, are formulated using the Euclidean loss
with loss weights of 1 and 100, respectively.
Computational Time: A forward pass of RegNet in our
real-time tracking system takes 13 ms on a GTX 1080 Ti.

2. Comparison with RGB-D methods
The 3D tracking of hands in purely RGB images is an

extremely challenging problem due to inherent depth am-
biguities of monocular RGB images. While our method
advances the state-of-the-art of RGB-only hand tracking
methods, there is still a gap between RGB-only and RGB-D
methods [6, 8, 10]. A quantitative analysis of this accuracy
gap is shown in Fig. 1, where we compare our results (dark
blue) with the RGB-D method from Sridhar et al. [11] (red).

In order to better understand the source of errors, we
perform an additional experiment where we translated the
global z-position of our RGB-only results to best match
the depth of the ground truth. In Fig. 1 we compare these
depth-normalized results (light blue) with our original re-
sults (blue). It can be seen that a significant portion of
the gap between methods based on RGB and RGB-D is
due to inaccuracies in the estimation of the hand root posi-
tion. Reasons for an inaccurate hand root position include a
skeleton that does not perfectly fit the user’s hand (in terms
of bone lengths), as well as inaccuracies in the 2D predic-
tions.

3. Detailed Qualitative Evaluation
In Figs. 2 and 3 we qualitatively evaluate each of the

intermediate stages along our tracking solution as well as
the final result. In particular, Fig. 2 shows results on the
EgoDexter dataset [6] where a subject grabs different ob-
jects in an office environment, and Fig. 3 shows results on
community videos downloaded from YouTube. In both fig-
ures, we provide visualizations of: heatmap maxima of the
2D joint detections (first row); root-relative 3D joint detec-
tions (second row); global 3D tracked hand projected into
camera plane (third row); and global 3D tracked hand visu-
alized in a virtual scenario with the original camera frustum
(fourth and fifth rows). Please see the supplementary video
for complete sequences.
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