
Supplemental: Multi-view Consistency as Supervisory Signal
for Learning Shape and Pose Prediction

Shubham Tulsiani, Alexei A. Efros, Jitendra Malik
University of California, Berkeley

{shubhtuls, efros, malik}@eecs.berkeley.edu

A1. Loss Formulation
We briefly described, in the main text, the formulation

of a view consistency loss L(x̄, C;V ) that measures the
inconsistency between a shape x̄ viewed according to cam-
era C and a depth/mask image V . Crucially, this loss was
differentiable w.r.t both, pose and shape. As indicated in
the main text, our formulation builds upon previously pro-
posed differentiable ray consistency formulation [3] with
some innovations to make it differentiable w.r.t pose. For
presentation clarity, we first present our full formulation, and
later discuss its relation to the previous techniques (a similar
discussion can also be found in the main text).

Notation. The (predicted) shape representation x̄ is
parametrized as occupancy probabilities of cells in a 3D
grid. We use the convention that a particular value in the
tensor x corresponds to the probability of the correspond-
ing voxel being empty. The verification image V that we
consider can be a depth or foreground mask image. Finally,
the camera C is parametrized via the intrinsic matrix K, and
extrinsic matrix defined using a translation t and rotation R.

Per-pixel Error as Ray Consistency Cost. We consider the
verification image V one pixel at a time and define the per-
pixel error using a (differentiable) ray consistency cost. Each
pixel p ≡ (u, v) has an associated value vp e.g. in the case of
a depth image, vp is the recorded depth at the pixel p. Addi-
tionally, each pixel corresponds to a ray originating from the
camera centre and crossing the image plane at (u, v). Given
the camera parameters C and shape x̄, we can examine the
ray corresponding to this pixel and check whether it is consis-
tent with the observation op. We define a ray consistency cost
function Lp(x̄, C; vp) to capture the error associated with
the pixel p. The view consistency loss can then be defined as
the sum of per-pixel errors L(x̄, C;V ) ≡

∑
p
Lp(x̄, C; vp).

Sampling Occupancies along a Ray. To define the con-
sistency cost function Lp(x̄, C; vp), we need to consider
the ray as it is passing through the probabilistically occu-
pied voxel grid x̄. We do so by looking at discrete points
sampled along the ray. Concretely, we sample points at a
pre-defined set of N = 80 depth values {di|1 ≤ i ≤ N}

along each ray. We denote by xpi the occupancy value at
the ith sample along this ray. To determine xpi , we look at
the 3D coordinate of the corresponding point. Note that this
can be determined using the camera parameters. Given the
camera intrinsic parameters (fu, fv, u0, v0), the ray corre-
sponding to the image pixel (u, v) travels along the direction
(u−u0

fu
, v−v0

fv
, 1) in the camera frame. Therefore, the ith

point along the ray, in the camera coordinate frame, is lo-
cated at li ≡ (u−u0

fu
di,

v−v0
fv

di, di). Then, given the camera
extrinsics (R, t), we can compute the location of his point in
the coordinate frame of the predicted shape x̄. Finally, we
can use trilinear sampling to determine the occupancy at this
point by sampling the value at this using the occupancies
x̄. Denoting by T (G, pt) a function that samples a volumet-
ric grid G at a location pt, we can compute the occupancy
sampled at the ith as below.

xpi = T (x̄, R× (li + t) ); (1)

li ≡ (
u− u0
fu

di,
v − v0
fv

di, di) (2)

Note that since the trilinear sampling function T is differ-
entiable w.r.t its arguments, the sampled occupancy xpi is
differentiable w.r.t the shape x̄ and the camera C.

Probabilistic Ray Tracing. We have so far considered the
ray associated with a pixel p and computed samples with cor-
responding occupancy probabilities along it. We now trace
this ray as it travels forward and use the samples along the
ray as checkpoints. In particular, we assume that when the
ray reaches the point corresponding to the ith sample, it ei-
ther travels forward or terminates at that point. Conditioned
on the ray reaching this sample, it travels forward with proba-
bility xpi and terminates with likelihood (1−xpi ). We denote
by zp ∈ {1, · · · , N+1} a random variable corresponding to
the sample index where the ray (probabilistically) terminates,
where zp = N + 1 implies that the ray escapes. We call
these probabilistic ray terminations as ray termination events
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and can compute the probability distribution q(zp) for these.

q(zp = i) = (1− xpi )

i−1∏
j=1

xpj ∀(i ≤ N); (3)

q(zp = N + 1) =

N∏
j=1

xpj ; (4)

Event Costs. Each event corresponds to the ray terminating
at a particular point. It is possible to assign a cost to each
event based on how inconsistent it is to w.r.t the pixel value
vp. If we have a depth observation vp ≡ dp, we can penalize
the event zp = i by measuring the difference between dp and
di. Alternatively, if we have a foreground image observation
i.e. vp ≡ sp ∈ {0, 1} where sp = 1 implies a foreground
pixel, we can penalize all events which correspond to a
different observation. We can therefore define a cost function
ψp(i) which computes the cost associated with event zp = i.

ψdepth
p (i) = |dp − di|; (5)

ψmask
p (i) = |sp − 1(i ≤ N)|; (6)

Ray Consistency Cost. We formulated the concept of ray
termination events, and associated a probability and a cost
to these. The ray consistency cost is then defined as the
expected event cost.

Lp(x̄, C; vp) = E
zp
ψp(zp) =

N∑
i=1

q(zp = i)ψp(i) (7)

Note that the probabilities q(zp = i) are a differentiable
function of xp which, in turn, is a differentiable function of
shape x̄ and camera C. The view consistency loss, which is
simply a sum of multiple ray consistency terms, is therefore
also differentiable w.r.t the shape and pose.

Relation to Previous Work. The formulation presented
draws upon previous work on differentiable ray consis-
tency [3] and leverages the notions of probabilistic ray ter-
mination events and event costs to define the ray consistency
loss. A crucial difference however, is that we, using trilinear
sampling, compute occupancies for point samples along the
ray instead of directly using the occupancies of the voxels
in the ray’s path. Unlike their formulation, this allows our
loss to also be differentiable w.r.t pose which is a crucial
requirement for our scenario. Yan et al. [4] also use a similar
sampling trick but their formulation is restricted to specifi-
cally using mask verification images and is additionally not
leveraged for learning about pose. Tulsiani et al. [3] also
discuss how their formulation can be adapted to use more
general verification images e.g. color, semantics etc. using
additional per-voxel predictions. While our experiments pre-
sented in the main text focus on leveraging mask or depth
verification images, a similar generalization is possible for
our formulation.

A2. Online Product Images Dataset
We used the ‘chair’ object category from the Stanford On-

line Products Dataset [2]. To obtain associated foreground
masks for these images, the semantic segmentation system
from Chen et al. [1], where for each image, the mask was
indicated by the pixels with most likely class label as ‘chair’.
As the obtained segmentation masks were often incorrect,
or objects in the images truncated/occluded, we manually
selected images of unoccluded/untruncated instances with a
reasonably accurate (though still noisy) predicted segmenta-
tion. For our training, we only used the object instances with
atleast 2 valid views. This resulting dataset is visualized in
Figure 1. The result visualizations shown in the main text are
using images from the original online products dataset [2],
but correspond to objects instances that were not used for our
training (due to lack of a sufficient number of valid views).
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Figure 1: Training instances for the online products dataset. We visualize all the training images used along with their (approximate)
segmentation masks, with images from the same object grouped together.
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