A. Appendix: Layer-specific details
A.1. Mathematical functions

Math functions such as hyperbolic tangent, the logistic
function, and softmax often appear in neural networks. No
lookup tables are needed since these functions are imple-
mented in pure fixed-point arithmetic similarly to how they
would be implemented in floating-point arithmetic’.

A.2. Addition

Some neural networks use a plain Addition layer type,
that simply adds two activation arrays together. Such Addi-
tion layers are more expensive in quantized inference com-
pared to floating-point because rescaling is needed: one in-
put needs to be rescaled onto the other’s scale using a fixed-
point multiplication by the multiplier M = S;/Ss similar
to what we have seen earlier (end of section 2.2), before
the actual addition can be performed as a simple integer ad-
dition; finally, the result must be rescaled again to fit the
output array’s scale®.

A.3. Concatenation

Fully general support for concatenation layers poses the
same rescaling problem as Addition layers. Because such
rescaling of uint8 values would be a lossy operation, and
as it seems that concatenation ought to be a lossless opera-
tion, we prefer to handle this problem differently: instead of
implementing lossy rescaling, we introduce a requirement
that all the input activations and the output activations in a
Concatenation layer have the same quantization parameters.
This removes the need for rescaling and concatenations are
thus lossless and free of any arithmetic’.

B. Appendix: ARM NEON details

This section assumes familiarity with assembly pro-
gramming on the ARM NEON instruction set. The instruc-
tion mnemonics below refer to the 64-bit ARM instruction
set, but the discussion applies equally to 32-bit ARM in-
structions.

The fixed-point multiplications referenced throughout
this article map exactly to the SQRDMULH instruction. It
is very important to use the correctly-rounding instruction
SQRDMULH and not SQDMULH'.

The rounding-to-nearest right-shifts referenced in sec-
tion 2.2 do not map exactly to any ARM NEON instruction.

7Pure-arithmetic, SIMD-ready, branch-free, fixed-point implementa-
tions of at least tanh and the logistic functions are given in gemmlowp
[18]’s fixedpoint directory, with specializations for NEON and SSE in-
struction sets. One can see in TensorFlow Lite [5] how these are called.

8See the TensorFlow Lite [5] implementation.

This is implemented in this part of the TensorFlow Lite [5] Converter

10The fixed-point math function implementations in gemmlowp [18] use
such fixed-point multiplications, and ordinary (non-saturating) integer ad-
ditions. We have no use for general saturated arithmetic.

The problem is that the “rounding right shift” instruction,
RSHL with variable negative offset, breaks ties by rounding
upward, instead of rounding them away from zero. For ex-
ample, if we use RSHL to implement the division —12/23,
the result will be —1 whereas it should be —2 with “round
to nearest”. This is problematic as it results in an overall
upward bias, which has been observed to cause significant
loss of end-to-end accuracy in neural network inference. A
correct round-to-nearest right-shift can still be implemented
using RSHL but with suitable fix-up arithmetic around it'".

For efficient NEON implementation of the matrix mul-
tiplication’s core accumulation, we use the following trick.
In the multiply-add operation in (10), we first change the
operands’ type from uint8 to int8 (which can be done by
subtracting 128 from the quantized values and zero-points).
Thus the core multiply-add becomes

int32 += int8 * 1int8. (B.1)

As mentioned in section 3, with a minor tweak of the quan-
tized training process, we can ensure that the weights, once
quantized as int8 values, never take the value —128. Hence,
the product in (B.1) is never —128 x —128, and is there-
fore always less than 2'# in absolute value. Hence, (B.1)
can accumulate two products on a local int16 accumulator
before that needs to be accumulated into the true int32 ac-
cumulator. This allows the use of an 8-way SIMD multi-
plication (SMULL on int8 operands), followed by an 8-way
SIMD multiply-add (SMLAL on int8 operands), followed
by a pairwise-add-and-accumulate into the int32 accumula-
tors (SADALP)'?.

C. Appendix: Graph diagrams

D. Experimental protocols
D.1. ResNet protocol

Preprocessing. All images from ImageNet [3] are re-
sized preserving aspect ratio so that the smallest side of the
image is 256. Then the center 224 x 224 patch is cropped
and the means are subtracted for each of the RGB channels.

Optimization. We use the momentum optimizer from
TensorFlow [1] with momentum 0.9 and a batch size of 32.
The learning rate starts from 10~ and decays in a staircase
fashion by 0.1 for every 30 epochs. Activation quantization
is delayed for 500, 000 steps for reasons discussed in section
3. Training uses 50 workers asynchronously, and stops after
validation accuracy plateaus, normally after 100 epochs.

11Tt is implemented here in gemmlowp [18].

2This technique is implemented in the optimized NEON kernel in
gemmlowp [18], which is in particular what TensorFlow Lite uses (see
the choice of L8R8WithLhsNonzeroBitDepthParams at this line).

https://github.com/google/gemmlowp/tree/fcf32e7a0a4d2af46e63eccf0c8fa4d83d0311c5/fixedpoint
https://github.com/tensorflow/tensorflow/blob/4952f981be07b8bf508f8226f83c10cdafa3f0c4/tensorflow/contrib/lite/kernels/internal/optimized/optimized_ops.h#L2705-L2844
https://github.com/tensorflow/tensorflow/blob/4952f981be07b8bf508f8226f83c10cdafa3f0c4/tensorflow/contrib/lite/kernels/internal/optimized/optimized_ops.h#L1402-L1507
https://github.com/tensorflow/tensorflow/blob/faf7f05f5ed3d92405656a318fb2d571a7d31532/tensorflow/contrib/lite/toco/graph_transformations/hardcode_min_max.cc#L66-L126
https://github.com/google/gemmlowp/tree/fcf32e7a0a4d2af46e63eccf0c8fa4d83d0311c5/fixedpoint
https://github.com/google/gemmlowp/blob/fcf32e7a0a4d2af46e63eccf0c8fa4d83d0311c5/fixedpoint/fixedpoint_neon.h#L146-L152
https://github.com/google/gemmlowp/blob/fcf32e7a0a4d2af46e63eccf0c8fa4d83d0311c5/internal/kernel_neon.h#L929-L1262
https://github.com/tensorflow/tensorflow/blob/4952f981be07b8bf508f8226f83c10cdafa3f0c4/tensorflow/contrib/lite/kernels/internal/optimized/optimized_ops.h#L903

output

input

Figure C.1: Simple graph: original

output

@uant

conv

s

URU

input

Figure C.2: Simple graph: quantized

D.2. Inception protocol

All results in table 4.3 were obtained after training for
approximately 10 million steps, with batches of 32 samples,
using 50 distributed workers, asynchronously. Training data
were ImageNet 2012 299 x 299 images with labels. Image
augmentation consisted of: random crops, random horizon-
tal flips, and random color distortion. The optimizer used
was RMSProp with learning rate starting at 0.045 and de-

output

>
>

<D

input

Figure C.3: Layer with a bypass connection: original

caying exponentially and stepwise with factor 0.94 after ev-
ery 2 epochs. Other RMSProp parameters were: 0.9 mo-
mentum, 0.9 decay, 1.0 epsilon term. Trained parameters
were EMA averaged with decay 0.9999.

D.3. COCO detection protocol

Preprocessing. During training, all images are ran-
domly cropped and resized to 320 x 320. During evalua-
tion, all images are directly resized to 320 x 320. All input
values are normalized to [—1, 1].

Optimization. We used the RMSprop optimizer from
TensorFlow [1] with a batch size of 32. The learning rate
starts from 4 x 1073 and decays in a staircase fashion by a
factor of 0.1 for every 100 epochs. Activation quantization
is delayed for 500, 000 steps for reasons discussed in section
3. Training uses 20 workers asynchronously, and stops after
validation accuracy plateaus, normally after approximately
6 million steps.

Metrics. Evaluation results are reported with the COCO
primary challenge metric: AP at IoU=.50:.05:.95. We fol-
low the same train/eval split in [13].

D.4. Face detection and face attribute classification
protocol

Preprocessing. Random 1:1 crops are taken from im-
ages in the Flickr-based dataset used in [10] and resized to
320 x 320 pixels for face detection and 128 x 128 pixels for
face attribute classification. The resulting crops are flipped
horizontally with a 50% probability. The values for each
of the RGB channels are renormalized to be in the range
[-1,1].

output

N

/

onv

=7

URU

input

Figure C.4: Layer with a bypass connection: quantized

Face Detection Optimization. We used the RMSprop
optimizer from TensorFlow [1] with a batch size of 32. The
learning rate starts from 4 x 1073 and decays in a stair-
case fashion by a factor of 0.1 for every 100 epochs. Ac-
tivation quantization is delayed for 500, 000 steps for rea-
sons discussed in section 3. Training uses 20 workers asyn-
chronously, and stops after validation accuracy plateaus,
normally after approximately 3 million steps.

Face Attribute Classification Optimization. We fol-
lowed the optimization protocol in [10]. We used the Ada-
grad optimizer from Tensorflow[1] with a batch size of 32
and a constant learning rate of 0.1. Training uses 12 work-
ers asynchronously, and stops at 20 million steps.

Latency Measurements. We created a binary that runs
the face detection and face attributes classification models
repeatedly on random inputs for 100 seconds. We pushed
this binary to Pixel and Pixel 2 phones using the adb
push command, and executed it on 1, 2, and 4 LITTLE
cores, and 1, 2, and 4 big cores using the adb shell
command with the appropriate taskset specified. We re-
ported the average runtime of the face detector model on

output

Y@ —p)/o+8

input

Figure C.5: Convolutional layer with batch normalization:
training graph

output

+

input

Figure C.6: Convolutional layer with batch normalization:
inference graph

320 x 320 inputs, and of the face attributes classifier model
on 128 x 128 inputs.

Face Attribute Classification Optimization. We fol-
lowed the optimization protocol in [10]. We used the Ada-
grad optimizer from Tensorflow[!] with a batch size of 32
and a constant learning rate of 0.1. Training uses 12 work-
ers asynchronously, and stops at 20 million steps.

Face Detection Multi-core Timing. We investigated
face detection latency as a function of the number of cores,

output

<+
conv fold

[wy/o [[3 = w/ff]

& & e

<D

input

£

Figure C.7: Convolutional layer with batch normalization:
training graph, folded

DM type LITTLE Cores big Cores
1 2 4 1 2 4
100% floats 711 - - 337 - -
8bits 372 238 167 154 100 69
50% floats 233 - - 106 - -
8bits 134 96 74 56 40 30
25% floats 100 - - 44 - -

8bits 67 52 43 28 22 18

Table D.1: Face detection: latency of floating point and quantized
models on Qualcomm Snapdragon 835 cores.

and showed the results in D.1.

Age Classification Performance. Table D.2 shows the
age precision of 5 years for varying weight and activation
bit depths. Precision at 5 years refers to the fraction of age
predictions that are within 5 years of the ground-truth. It
is evident that when the sum of bit depth being equal, the
models with the identical weight and activation bit depths

output

Enan
& &5 0

moments
conv

’

input

Figure C.8: Convolutional layer with batch normalization:
training graph, folded and quantized

act. g 7 6 5 4
wt.
8 13% -16% 32% -60% -9.8%
7 8% -12% -46% -1.0% -9.9%
6 21% -49% 2.6% -13% -9.6%
5 31% -61% -18% -44% -10.0%
4 10.6% -208% -17.9% -190% -19.5%

Table D.2: Face attributes: Age precision at difference of 5 years
for quantized model (varying weight and activation bit depths)
compared with floating point.

achieve the most favorable precision.

