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1. Architecture of the Visual Classifier C

(Extension of Section 4.2)

We select the recently proposed convolutional siamese
network [4] as C, which makes better use of the label infor-
mation and has good performance in the large-scale datasets
such as Market1501[3]. As shown in Fig. 1, the network
adopts a siamese scheme including two ImageNet pre-trained
CNN modules, which share the same weight parameters and
extract visual features from the input images S; and S;. The
CNN module is achieved from the ResNet-50 network [ 1] by
removing its final fully-connected (FC) layer. The outputs of
the two CNN modules are flattened into two one-dimensional
vectors: v; and v, which act as the embedding visual feature
vectors of the input images.

To measure the matching degree of the input images, their
feature vectors v; and v; are fed into the following square
layer to conduct subtracting and squaring element-wisely:
v, = (0; — v3)?. Finally, a convolutional layer is used to
transform v into the similarity score as:

G = sigmoid(fs o vy) (1)

.Here 6 denotes the parameters in the convolutional layer, o
denotes the convolutional operation, and sigmoid indicates
the sigmoid activation function. By comparing the predicted
similarity score with the ground-truth matching result of .S;
and S, we can achieve the variation loss as a cross entropy
form:

LOSS, = —q-log(q) — (1 —q) - log(1 — §) @

.Here ¢ = 1 when §; and S; contain the same person.
otherwise, ¢ = 0.
Besides predicting the similarity score, the model also
predicts the identity of each image in the following steps.
Each visual feature vector (v, (x = ,j) ) is fed into one

convolutional layer to be mapped into an one-dimensional
vector with the size K, where K is equal to the total number
of the pedestrians in the dataset. Then the following softmax
unit is applied to normalize the output as follows:

P@®) = softmax(0, o ) (x =i, 7) )

Here 6, is the parameter in the convolutional layer and o
denotes the convolutional operation. The output P is used
to predict the identity of the person contained in the input
image S, (z = i, ). By comparing P(*) with the ground-
truth identify label, we can achieve the identification loss
as the cross-entropy form:

K K
LOSS;a =Y (~logB" - P{Y + 3 (~logP? - P 4
k=1 k=1
Here P\*) (x = i, j) is the identity vector of the input image
Ss. P,Ex) = 0 for all k except Pt(x) = 1, where ¢ is ID of the
person in the image S,
The final loss function of the model is defined as:

LOSSy = LOSSy, + LOSS,q (5)

According to [2], this kind of composite loss makes the
classifier more efficient to extract the view invariant visual
features for Re-ID than the single loss function.

While deploying this classifier to perform Re-ID, given
two images S; and S; as input, the CNN modules extract
their visual feature vectors v; and v as shown in Fig. 1. The
matching probability of S; and \S; is measured as the cosine
similarity of the two feature vectors:
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According to the Eq.(11) of the original paper, we have:

P’I‘(S ”‘_7-‘ S'|’Ui,’Uj,Aij,Ci,Cj) (11)
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q Pr(Aj,ciycj)

Figure 1: Visual classifier based on CNN. By substituting Eq.(11) into Eq.(10), we have:

2. Proof of Eq. (5)
Pr(Y(S;) = Y(S))|vi,vj, Dij, ¢, ¢5)
_ ’ ’ (M +a(l—a—5)_1)
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= Pr(lQi,ci,c;|T(S:) = T(55)) * * (1 — )Mz — BM3) + Ej, (12)
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On the other hand, from the Eq.(9) of the original paper,

Pr(Y(S;) # Y(S5)|8: IF S;5) we have:
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Similarly, we have: = Pr(lg;,ci,¢5) a3
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Pr(A;j,ci,c;|S: ¥ S5)
= Pr(Dgj,ci | T(Ss) = T(S;)) * From (13) and (12) we have:
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Pr(Y(S;) # Y(S;)|S: ¥ S;) = (-E,—E)*(Mi+a(l-a-p8"")
= Pr(Qij,ci,ci|Y(S;) = Y(S;)) * En + *((1_a)M2_BM3)+E’:L*PT(Aij7Ci7Cj) (14)
Pr(lij, ci, ¢ Y(8i) # Y(S5)) * (1 — En) ® Thus, we have:
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0 From (15) have:

3. Proof of Theorem 1 (My + En(1— Ep — En)" 1)1 — En — Ep)

= (Q1-E,-E)((1-a-BM E, 1
Proof of Theorem 1: By analyzing the relation- ( p = B =AMy +ajp+ B, (16)

ship between Pr(Y(S;) = T(S;)|vi,v;, Nij, ¢i,¢j) and After taking the derivative with respect to M; in the both
Pr(S; IF£ Sjlvi,vj, Nij, ¢, ¢j), we have: sides of Eq. (16), we can get:



1—Ep—En=(1-a-p)(1-E, - Ey) an

Thus, when E, + F,, < 1 and a + 8 < 1, we can infer
from Eq.(17) that:

E,+ E, < Ep + En. (18)

O

(b)

Figure 2: The  spatio-temporal  distribution
Pr(Aj,ci,ci|Y(S;) ke Y(S;)) learned (a) in the
‘GRID’ dataset, and (b) in the ‘Market1501° dataset.

4. Learned Spatio-temporal Patterns

(Extension of Fig.4)

Fig. 2 shows the spatio-temporal distribution
PT(AZ']'7CZ‘,CJ'|T(S¢) “_C T(S])) learned in the ‘GRID’
and ‘Market1501” dataset.
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