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Overview

In this document, we first analyze the effect of the proposed loss function in Section 1, and then add more analysis of the
proposed dual network in Section 2. Finally, we show more visual comparisons in Section 3.

1. Effect of the Proposed Loss Function

In Table 7 of the manuscript, we quantitatively evaluate the effects of different loss functions on image dehazing. To better
understand the effects, we show more visual comparison results generated by different loss functions. Figure 1 shows the
evaluation results on image dehazing. The dehazed results by the proposed method using only the loss function £, contain
distorted color and the results by the proposed method using £, and £, or £, and £, contain halo effects. In contrast, the
results generated by the proposed method using the proposed loss functions are much better.

(a) Input (b) With L, (c) With L and L4 (d) With L, and L (e) With £

Figure 1. The effect of the proposed loss function on image dehazing. The results generated by the proposed method with only L, contain
color distortion, while the dehazed results by the method with £, and L4 or £, and L, contain halo effects (best viewed on high-resolution
displays).
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2. More Analysis of the Proposed Dual CNN

As mentioned in the manuscript, our algorithm is motivated by the decomposition of a signal into structures and details
and thus needs to learn both structures and details. To validate whether the propose algorithm is able to estimate the details
and structures, we show some results from the Net-S and Net-D of the proposed algorithm on the image super-resolution,
image denoising, image filtering, and image deraining problems. Figures 2, 3, 4 and 5 show that the DualCNN is able to
estimate the details and structures, thus facilitating the estimations of the image super-resolution, image denoising, image
filtering, and image deraining.

(b) Net-D (d) Results

Figure 2. On the image super-resolution problem (x 3). The proposed DualCNN is able to estimate the details and structures from the input
images, thus leading to the high-quality results with finer details (best viewed on high-resolution displays).



(a) GT (b) Net-D (c) Net-S (d) Results

Figure 3. On the image denoising problem. The proposed DualCNN is able to estimate the details and structures from the input images,
thus leading to the clean images with finer details (best viewed on high-resolution displays).
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(a) Input (b) Net-D (d) Results

Figure 4. On the image filtering problem [5]. The proposed DualCNN is able to estimate the details and structures from the input images.
For this problem, the pixel values of the images from Net-D are almost negative. Thus, based on the formation, the proposed method is
able to generate the results which are close to the ground truths.
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(d) Results
Figure 5. On the image deraining problem. The proposed DualCNN is able to estimate the details (including both rainy streaks and details)
and structures from the input images and generates the clean results.



3. More Experimental Results
In this section, we provide more visual comparisons with state-of-the-art methods on each individual application.
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(e) A+ [4] (f) SRCNN [1] (g) VDSR [3] (h) Ours
41.1984/0.9865 40.7655/0.9857 42.6512/0.9898 42.7952/0.9900
Figure 6. Visual comparisons for super-resolution (x2). The proposed method generates the results with higher PSNR and SSIM values
(best viewed on high-resolution displays).
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Figure 7. Visual comparisons for super-resolution (x3). The proposed method generates the results with higher PSNR and SSIM values
(best viewed on high-resolution displays).
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(e) A+ [4] (f) SRCNN [1] (g) VDSR [3] (h) Ours
25.8823/0.7537 34.9628/0.9212 35.3354/0.9264 35.3700/0.9268
Figure 8. Visual comparisons for super-resolution (x4). The proposed method generates the results with higher PSNR and SSIM values
(best viewed on high-resolution displays).



(a) Xu et al. [6] (b) Net-S (c) Ours (d) RTV
Figure 9. Visual comparisons for learning RTV image filters on the test dataset of [6]. The deep learning based method [6] is not able to
remove the details and structures that are supposed to be removed (the red boxes in (a)). The proposed method generates the results that
are visually similar to the ground truths in (d) (best viewed on high-resolution displays).



(a) Inputs (b) ID-GAN [7] (c) Net-S (d) Ours

Figure 10. Visual comparisons for image deraining on the test dataset by Zhang et al. [7]. The deep learning based method [7] is not able
to remove the rainy streaks. The details of the recovered images are not preserved well. The proposed method generates the much clearer
images with finer details (best viewed on high-resolution displays).



(a) Inputs (b) ID-GAN [7] (c) Net-S (d) Ours
Figure 11. Visual comparisons for image deraining on the real images. The deep learning based method [7] does not preserve the details
well and introduces some fake structures (the green boxes in (b)). The proposed method generates much clearer images with finer details
(best viewed on high-resolution displays).



(a) Inputs (b) Atmospheric light (c) Transmission map (d) Ours
Figure 12. Image dehazing on the real images. Our method directly estimates the atmospheric light (b) and the transmission map (c) and
generates clear images.
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