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1. Discussion about the Symmetric CNN
This section discusses how the use of a symmetric convo-

lutional neural network (CNN) prevents the spectral trans-
lation network (STN) from learning disparity.

1.1. Problem Simplification and Basic Property

Because white balance and exposure correction are
global operations, they can be ignored when considering the
displacement. Let I be the input image, F be the filter pre-
dicted by the symmetric CNN and O be the output image.
Without loss of generality assume I , F and O to be single
channel. Formally,

O(x, y) = I(x, y)F(x, y) (1)

Now consider the left-right flipped image (for simplicity
assume image coordinate system is centered on the image):

I ′(x, y) = I(−x, y) (2)

Because the filtering kernels in the symmetric CNN
are left-right symmetric, a flipped input image I ′(x, y) =
I(−x, y) leads to a flipped output filter F ′(x, y) =
F(−x, y). Thus the output O′ of the flipped image I ′ is:

O′(x, y) = I(−x, y)F(−x, y) = O(−x, y) (3)

1.2. Ignoring Spectral Difference

Spectral difference is ignored here and we focus on geo-
metric difference (disparity) first.

We assume that if STN learns disparity, it only learns
non-negative disparity. This is a reasonable assumption be-
cause the training data obey the epipolar constraint, which
allows only non-negative disparity.

The STN does not learn disparity because it cannot shift
the image I to get the image O. We explain why the STN
does not shift I to get O by contradiction.

Assume that the STN shifts I to get O according to dis-
parity map ∆(x, y) ≥ 0, i.e.,

O(x, y) = I(x+ ∆(x, y), y) (4)

Similarly, assume that the STN shifts I ′ to get O′ according
to disparity map ∆′(x, y) ≥ 0, i.e.,

O′(x, y) = I ′(x+ ∆′(x, y), y) (5)

∆(x, y) and ∆′(x, y) are assumed to be smooth.
Start with Equation 3:

O′(x, y) = O(−x, y) (6)

Now apply Equation 5 to left hand side and Equation 4
to right hand side to get:

I ′(x+ ∆′(x, y), y) = I(−x+ ∆(−x, y), y) (7)

Now flipping the right hand side gives:

I ′(x+ ∆′(x, y), y) = I ′(x−∆(−x, y), y) (8)

Since ∆′(x, y) ≥ 0 and ∆(−x, y) ≥ 0 and they are smooth
as assumed, ∆′(x, y) and ∆(−x, y) must be 0 assuming
there are no duplicated patches in the image, and therefore
the STN cannot shift the image.

1.3. Considering Spectral Difference

We further consider spectral difference by introducing
Λ(x, y) and Λ′(x, y) as spectral translation factors and ex-
tend Equation 4 and 5 to:

O(x, y) = Λ(x, y)I(x+ ∆(x, y), y) (9)

O′(x, y) = Λ′(x, y)I(x+ ∆′(x, y), y) (10)

We assume that flipping I leads to the flipped Λ(x, y),
because flipping does not change spectral property. For-
mally,

Λ′(x, y) = Λ(−x, y) (11)

Then we get the same Equation 7 because Λ′(x, y) and
Λ(−x, y) are canceled out. Finally we can make the same
conclusion that STN does not shift the input image and thus
does not learn disparity.
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Figure 1. More qualitative comparisons. The proposed method provides less noisy disparity maps and performs better on
lights, glass and glossy surfaces.



Method Common Light Glass Glossy Vegetation Skin Clothing Bag Mean
>3 >5 >3 >5 >3 >5 >3 >5 >3 >5 >3 >5 >3 >5 >3 >5 >3 >5

CMA [1] 2.00 1.25 21.38 12.47 7.22 4.05 14.44 11.70 7.09 4.39 7.00 3.70 19.30 10.53 18.04 8.25 12.06 7.04
ANCC [2] 1.30 1.02 5.79 3.56 8.80 3.52 8.59 6.40 21.62 17.91 4.53 3.70 5.96 4.91 6.19 3.61 7.85 5.58
DASC [3] 0.98 0.46 2.90 0.89 5.81 1.94 8.59 4.57 2.53 0.68 4.12 2.06 0.70 0.00 5.15 1.03 3.85 1.45
Proposed 0.00 0.00 0.45 0.00 0.35 0.00 0.18 0.00 0.00 0.00 1.65 0.00 0.70 0.35 0.00 0.00 0.42 0.04

Table 1. Another evaluation metric. Disparity BPR with threshold 3 and 5 pixels is reported in percentage for each material.
Our method outperforms other methods generally. DASC [3] performs better than our method on clothing, possibly due to
the weak relationship between RGB and NIR appearances of clothing.

2. Preprocessing in Experiments
Preprocessing is done before sending images into the

networks. Black level correction and normalization are ap-
plied to make images linear and have mean pixel value of
0.5. Exposure times used in the STN are adjusted according
to the normalization scale. Pixels are clamped within [0, 5].

Let I be the original image. The image after black level
correction is:

Ib =
max{I − b, 0}

255− b
(12)

where b = 2 is the maximum pixel value when there is no
light.

The image after normalization is

In = min{ 0.5Ib
mean(Ib) + ε

, 5} (13)

where ε = 0.001 to avoid the division by zero.
The exposure time ∆t is corrected to be:

∆tn =
0.5∆t

mean(Ib) + ε
(14)

where ε = 0.001 to avoid the division by zero.

3. More Qualitative Results
See Figure 1 for more qualitative comparisons.

4. Another Evaluation Metric
We report the bad pixel rate (BPR) as another evaluation

metric in Table 1. Our method outperforms other methods
generally. DASC [3] performs better on clothing, possibly
because of the weak relationship between clothing’s RGB
and NIR appearances.

5. Discussion about the Intermediate Results
As shown in Figure 3 (d), (e) and (f) and pointed out by

the caption, some clothing and bags fail in spectral trans-
lation. It is probably because of the weak relationship be-
tween its RGB and NIR intensities. A typical example is
that a dark clothing in RGB may look dark or bright in NIR.

Thus it is hard for STN to predict the correct intensity trans-
lation in this case.

However, the structural dissimilarity term in the align-
ment loss can partially solve this problem. Spectral transla-
tion usually preserves the structure. In this case, the corre-
sponding regions could be matched because of high struc-
tural similarity. For example, the edge of clothing may be
matched in disparity prediction.
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