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1. Spherical Harmonics
The 9 dimensional spherical harmonics in Cartesian co-

ordinates of the surface normal ~n = (x, y, z) are:
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2. Quantitative Evaluation of LDAN on differ-
ent lighting conditions

In this section, we show the quantitative evaluation of
LDAN under different lighting conditions. We take the
lighting condition shown in Figure 4 in our paper as exam-
ple. In classification we expect extreme lighting to be dif-
ferentiated more easily than normal lighting because equal
changes in the angle of lighting directions affect frontal
lighting less than side lighting under the Lambertian model.
Table 1 shows the top-1 classification results of LDAN and
SIRFS for faces under four illumination conditions corre-
sponding to Figure 4 (a) to (d) in the original submission.
As expected, under extreme side lighting (i.e., (b) and (d))
or dark lighting (i.e., (a)), LDAN predicts very consistent
lightings that lead to good performance. Classifications in
normal lighting (c) are harder for both methods, but LDAN
is far superior to SIRFS.

3. Details of Model B and Model C
In this section, we show the details of Model B and

Model C. Figure 1 (a) and (b) illustrates the structure of

∗means equal contribution.

Table 1. Top-1 classification results of different lightings.
Dark (a) Side (b) Norm (c) Side (d)

LDAN % 99.80 73.90 61.37 71.81
SIRFS % 96.40 76.31 34.14 50.60

Model B and Model C respectively. The objective function
of training Model B and Model C is the same with that of
training the LDAN:

min
R,S,L

max
D

∑
i

(L(R(ri))− ŷri)
2

︸ ︷︷ ︸
regression loss for real

+ µES(s)∼Ps
[D(S(s)]− ER(r)∼Pr

[D(R(r))]︸ ︷︷ ︸
adversarial loss

+
∑

(i,j)∈Ω

(ν[(L(S(si))− y∗si)
2 + (L(S(sj))− y∗si)

2]︸ ︷︷ ︸
regression loss for synthetic

+ λ(S(si)− S(sj))2︸ ︷︷ ︸
feature loss

), (2)

where µ = 0.01, λ = 0.01, and ν = 1. Model B is in-
spired by [1]: real and synthetic data share the same fea-
ture net. Model C, on the other hand, is inspired by [6]:
it defines two different feature nets for real and synthetic
data. In a high level view, the difference between Model
B/C and LDAN is that Model B/C tries to map lighting re-
lated features for synthetic and real data to a common space,
which might be different from that learned with synthetic
data alone, whereas LDAN tries to directly map lighting re-
lated features of real data to the space of synthetic data. This
difference is illustrated in Figure 2.

Algorithm 1 shows the details of how to train Model B
and C.
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Algorithm 1 Training procedure for Model B/C
1: for number of iterations in one epoch do
2: for k= 1 to 1 iterations do
3: Sample 128 s and r, train discriminator D

through the following loss using RMSProp[3]:

max
D

ES(s)∼Ps
[D(S(s))]− ER(r)∼Pr

[D(R(r))]

4: end for
5: for k=1 to 4 iterations do
6: Sample 128 s and r, train L, R and S through

Equation 2 by Adadelta.
7: end for
8: end for

4. Network Structures For Lighting Regression
We show the structure of our networks in this section. As

mentioned in the paper, we borrow the structure of ResNet
[2] to define our feature net. Figure 4 (a) shows the details.
A block like “Conv 3× 3, 16” means a convolutional layer
with 16 filters, the size of each filter is 3 × 3 × n where n
is the number of input channels. This convolutional layer is
followed by a batch normalization layer and a ReLU layer.
A block like “Residual 3× 3 32” means a residual block of
two 3× 3 convolutional layers with skip connections: each
of the two convolutional layers has 32 filters and is followed
by batch normalization and ReLU layer. “,/2” means the
stride of the first convolutional layer in residual block is 2.
The output of the feature net is a 128 dimensional feature.

Figure 4 (b) shows the structure of the lighting net. “FC
ReLU 128” means a fully connected layer whose number
of outputs is 128 followed by a ReLU layer. “Dropout”
means a dropout layer with dropout ratio being 0.5. “FC,
18” means a fully connected layer with 18 outputs.

Figure 4 (c) shows the structure of the discriminator. “FC
tanh, 1” means a fully connected layer with one output fol-
lowed by a tanh layer.

5. Details of Keypoints Regression
We resize each of the images from the dataset to be

256× 256. Following [5], we normalize the keypoint loca-
tion by the width and height of the image, so that the (x, y)
coordinates of each 2D keypoint are within [0, 1]. As illus-
trated in Figure 3, similar to the lighting regression network,
our keypoints regression network contains two parts: a fea-
ture net and a regression net. Inspired by [7], we define
a separate regression network for each keypoint, resulting
in 14 different regression networks. Our feature net takes
a 256 × 256 image as input and outputs a 16 × 16 × 512
tensor as the feature vector. Our regression network takes
this feature as input and predicts the 2D location of the cor-

responding keypoint. Figure 5 (a), (b), and (c) shows the
structure of the feature net, regression net and discriminator
separately. The notion of each block is the same as those in
Figure 4.

Similar to the lighting regression formulation, let us de-
note S as the feature network for synthetic data, R as the
feature network for real data, and L as the regression net-
work. Specifically, we use Lj to represent the regression
network for the j-th keypoint, where j = 1, 2, ..., 14. Us-
ing (si,y

∗
si) as (data, ground truth label) pair for synthetic

data, and yj∗si to represent the ground truth location of the
j-th keypoint. We train the feature net S and regression net
L using the following loss function:

min
S,L

∑
i,j

(Lj(S(si))− yj∗si )
2 (3)

After training S and L, we fix S and L and train the
feature netRwith real data together with a discriminatorD.
Suppose ri represents the i-th real data and ŷri represents
its corresponding noisy label. More specifically, letting ŷjri
represents the location of j-th keypoint, we train R and D
using the following loss function:

min
R

max
D

∑
i,j

(Lj(R(ri))− ŷjri)
2

︸ ︷︷ ︸
regression loss for real

+ µ (ES(s)∼Ps
[D(S(s)]− ER(r)∼Pr

[D(R(r))])︸ ︷︷ ︸
adversarial loss

(4)

where µ = 0.05 and Ps and Pr are the distributions of key-
points related features for synthetic and real images respec-
tively.

We train S and L for 50 epochs using SGD. We set the
learning rate to 0.05, momentum to 0.9, and batch size to
64. While training R and D, we train D using RMSProp
[3] and R using ADAM [4] alternatively. D is trained for
one mini batch while R is trained for three mini batches in
one iteration with batch size of 64. We train D and R for
75 epochs.
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Figure 1. Two models we use to compare with the proposed LDAN. Different from LDAN, Model B uses the same feature net for synthetic
and real data; Model C trains feature net for synthetic and real data together.
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(a) Model B and C (b) LDAN
Figure 2. (a) illustrates the distribution of lighting related features of real and synthetic data before and after applying adversarial loss for
Model B and Model C. With the adversarial loss, the distribution of lighting related features for real and synthetic data will move from the
distribution illustrated by solid lines to that illustrated by dashed lines. (b) illustrates the distribution of lighting related features of real and
synthetic data before and after applying adversarial loss for LDAN. Since the synthetic networks is fixed, the adversarial loss will drag the
distribution of lighting related features of real data from the solid line to the dashed line. Note: “ad loss” means adversarial loss.
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Figure 3. Illustration of the network for keypoints regression.
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Figure 4. (a), (b) and (c) show the structure of feature net, lighting net, and discriminator used in our paper.
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Figure 5. (a), (b) and (c) show the structure of feature net, keypoint regression net, and discriminator used in our paper.


