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1. Analysis of Divergence of Distributions un-
der Deformations

In this section, we provide additional results for analysis
of divergence of higher moments of feature distributions un-
der deformation. As argued in the Figure 1 of the main text,
deformations will result in shift of skewness and kurtosis as
well as that of mean and variance. In addition, these types of
shift cannot be successfully reduced by normalization meth-
ods. In Figure 1, we depict the amount of shift of skewness
and kurtosis between feature distributions obtained using
original and deformed images. We employ VGG16 [1] for
evaluation of the models, and measure the amount of change
of skewness and kurtosis for neurons in 6 different layers.
5,000 original and deformed images are used to calculate
feature distributions. Note that the skewness of a normal
distribution is defined on (−1, 1), and the results indicate a
decent amount of shift of skewness and kurtosis.

(a) conv2_2 (b) conv3_2

(c) conv4_1 (d) conv4_3

(e) conv5_2 (f) fc6

Figure 1: Change of skewness and kurtosis for neurons
used at different layers. Horizontal axis shows difference of
skewness and kurtosis between distributions obtained from
original and deformed images.
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2. Analysis of Effect of Regularization to Clas-
sification Error

In this section, we examine the effect of L1/L2 regu-
larization towards exponent α used in the proposed power
function. We employ a small network (details are given in
Table 2) to perform standard classification tasks on the Cifar-
10/100 datasets. The average classification errors with their
std. deviations are given in Table 1. It is observed that, L2
regularization provides better results for the Cifar-10, while
models that employ L1 regularization perform slightly better
for the Cifar-100. Consequently, we infer that L1 regular-
ization enforces a sparse distribution on α, where majority
of the channels act as an identical mapping. Therefore, we
observe a reduction of over-fitting in the Cifar-100 (larger
number of classes with less training samples per class) com-
pared to the Cifar-10.

Table 1: Classification error (%) obtained using different
types of regularization on the exponent α for the Cifar-
10/100.

Models Cifar-10 Cifar-100

Base 18.31± 0.15 46.63± 0.28

L1 regularization

+POW-1 18.03± 0.19 46.21± 0.09
+POW-2 18.39± 0.18 46.44± 0.31
+POW-4 18.58± 0.34 46.45± 0.35
+POW-8 18.41± 0.24 45.99± 0.39

+POW-16 18.10± 0.07 46.43± 0.49

L2 regularization

+POW-1 17.99± 0.17 46.52± 0.22
+POW-2 17.92± 0.14 46.53± 0.34
+POW-4 17.99± 0.17 46.52± 0.24
+POW-8 17.99± 0.17 46.46± 0.34

+POW-16 18.06± 0.32 46.39± 0.42

Table 2: CNN configurations for Cifar-10/100 used in Sec-
tion 2. The convolution layer parameters are denoted by
conv –<RF size>–<number of output channels>. All the
conv. layers are set to be stride 1 equipped with pad 1. The
conv. layers in the middle block are equipped with proposed
power function.

Module

conv – 3× 3 – 32
BN & ReLU

max-pooling – 2× 2 – stride 2

conv – 3× 3 – 64
BN & ReLU

conv – 3× 3 – 64
BN & ReLU

max-pooling – 2× 2 – stride 2

conv – 3× 3 – 10/100
global ave-pooling
soft-max classifier
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3. Analysis of Distribution of α
In this section, we examine distributions of learned exponents α for +POW model used in Section 3.2 of the main text. We

visualize the distributions within convolution layers of different blocks of the ResNet-18+POW-1 model, and the histograms
are shown in Figure 2. It can be observed that, the majority of learned α are distributed around 0. Strong quantization effects
are obtained for layers such as res0_block0_conv0. On the other hand, for layers such as res3_block1_conv0, extracted
features are usually sparser than those extracted in the lower layers. In addition, for these layers, employment of α provides an
amplification effect on features, that is, activations larger than 1 are amplified, while those smaller than 1 are quantized to 0.

(a) res0_block0_conv0 (b) res0_block0_conv1 (c) res0_block1_conv0 (d) res0_block1_conv1

(e) res1_block0_conv0 (f) res1_block0_conv1 (g) res1_block1_conv0 (h) res1_block1_conv1

(i) res2_block0_conv0 (j) res2_block0_conv1 (k) res2_block1_conv0 (l) res2_block1_conv1

(m) res3_block0_conv0 (n) res3_block0_conv1 (o) res3_block1_conv0 (p) res3_block1_conv1

Figure 2: Distributions of learned α for the ResNet-18+POW-1 model utilized in Section 3.2 of the main text. The
res_block_conv denotes the index of the layers.
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4. Analysis of Quantization Resolution and Number of Splits
In this section, we provide experimental results for employment of different quantization resolutions in +SF models and

different number of splits for +POW models. For this propose, we quantize the ResNet-18/50 using floor function with a
resolution of 10. In addition, we employ a small 10-layer plain network (given in Table 4) for examining the robustness of
+POW model under different split configurations. We use the same approach for evaluating the robustness as utilized in Section
3.2 of the main text, and the results are provided in Table 3. The results show that quantization of the models with lower
resolution is helpful in dealing with statistical noises. However, the lack of expressive power also limits their performance
towards clean or Jpeg compressed images. On the other hand, the increased number of splits for +POW models seems to cause
over-fitting problems and performance decrease in general.

Table 3: Classification accuracy (Top-5 accuracy(%)) obtained using distorted images.

Models Clean Motion
Blur

Jpeg
Comp.

Salt &
Pepper

NGRN
Noise

In-
paint.

Tar.
Occ.a

ResNet18 90.3 31.0 38.0 27.6 24.9 31.4 48.4
+SF-10 90.3 31.8 36.0 34.6 31.7 31.8 47.4

+SF-100 90.4 32.3 43.8 26.7 24.7 31.7 45.9

ResNet50 93.4 39.2 51.2 52.9 50.7 35.6 51.9
+SF-10 92.9 33.8 53.1 55.8 51.8 30.9 49.6

+SF-100 93.5 41.2 53.2 52.7 51.3 28.3 53.9

Plain-10 83.5 41.7 32.1 22.1 22.3 32.5 42.3
+POW-1 83.8 39.4 31.5 27.9 27.7 33.0 41.8
+POW-2 83.9 38.3 29.2 25.4 25.4 33.9 40.2
+POW-4 83.6 37.4 31.1 24.2 26.8 33.2 41.9
+POW-8 83.9 38.9 31.3 23.8 25.1 33.7 43.0

a Top-1 accuracy is reported.

Table 4: The configuration of the Plain-10 models used in Section 4. The convolution layer parameters are denoted by conv
–<RF size>–<number of output channels>. All the conv. layers are set to be stride 1 equipped with pad 1. All the conv. layers
are followed with a combination of BN-ReLU.

Module

conv – 7× 7 – 64

max-pooling – 3× 3 – stride 2

conv – 3× 3 – 64 – stride 2
conv – 3× 3 – 64

conv – 3× 3 – 128 – stride 2
conv – 3× 3 – 128

conv – 3× 3 – 256 – stride 2
conv – 3× 3 – 256

conv – 3× 3 – 512 – stride 2
conv – 3× 3 – 512

global ave-pooling
fc – 1000

soft-max classifier
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5. Additional Results on ResNet-50
We provide additional results on classification perfor-

mance for employment of distortion methods with different
strength (see Figure 4 in the main text), using ResNet-50
as the base model. These figures depict that the improved
robustness against both minor and heavy distortions can be
verified in ResNet-50 based models as well. Moreover, we
observe that for targeted occlusion, the proposed methods im-
plemented in ResNet-50 out-performed the base ResNet-50
model regardless of the strength of distortion. On the other
hand, the boost for Jpeg compression is relatively trivial
compared to that observed with the ResNet-18 models. We
argue that, since most of the training samples are encoded
using Jpeg compression, a model with increased capacity
would be helpful in dealing with the compression artifacts
inherently (e.g. the ResNet-50 performs ∼13% better com-
pared with the ResNet-18 for Jpeg5). As a consequence, the
additional expressive power obtained from models equipped
with power function may increase complexity of the space
of hypothesis functions learned by the networks and cause
over-fitting. We should also be aware that, the ResNet-50
is still fragile towards occlusions (targeted and inpainting),
even its better generalization performance (accuracy) regard-
ing clean images seems to be helpful for defending against
statistical distortions. Therefore, we conjecture that the best
approach which can be used to deal heavily distorted images
is still to train with them, if we have the prior knowledge of
the types of distortions in test images.

6. Additional Visualizations on Object Detec-
tion

We provide additional visualizations of object detection
task using Voc Pascal 2007 dataset, the results are given in
Figure 4.
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(a) Motion Blur (b) Jpeg

(c) Salt and pepper (d) NGRN

(e) Inpainting (f) Target occlusion

Figure 3: Classification accuracy (Top-5 accuracy(%)) ob-
tained using images with different strength of distortions.
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ZF +POW-1 ZF +POW-1

Figure 4: Examples of object detection results obtained using deformed images. Text given in green color indicates the
class of objects with confidence values. Rows from top to bottom: Original images, images with minor deformation
(Inpainting, Random Noise), images with heavy deformation (Inpainting, Random Noise, Salt and Pepper noise, Blurring,
Jpeg compression).
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