
Supplementary Material: Efficient Subpixel
Refinement with Symbolic Linear

Predictors

Vincent Lui, Jonathan Geeves, Winston Yii, and Tom Drummond

1 derivation of error prediction equation

In Sec. 5.4 of the paper, we denote the predicted average error of a Linear
Predictor using Eq. (26). Here, we show how this term is derived from Eq.
(25), which is re-stated here as

ē2 = Tr
[
(AE − P)(AE − P)T

]
, (1)

where A is the Linear Predictor, E is the error matrix, and P is the warp
matrix. Noting that A = (PET)(EE)−1, and letting X = (PET), Z = EE, we
substitute A = XZ−1 into (1) which yields

ē2 = Tr
[
(XZ−1E − P)(ETZ−1XT − PT)

]
(2)

where we have used that Z is symmetric. Expanding the bracket gives

ē2 =
Tr
[
XZ−1ZZ−1XT − X − XZ−1XT − XZ−1LT + PPT]

Tr
[
PPT − XZ−1XT] . (3)

Finally, substituting A = XZ−1 and X = PET back into (3), we obtain

ē2 = Tr
[
PPT)− Tr(A(PET)

]
, (4)

which is the result shown in the paper.

2 additional results from synthetic experiment

In this section, we provide additional results from the synthetic data ex-
periment (see Sec. 6.1 in the paper). Fig. 1(a) and (b) provides a deeper
illustration on how the computational complexity of our method changes.
From Fig. 1, we see that the number of non-zero coefficients to be computed
increases very slowly as the number of sample warps increases, leading to
an very slow increase in computational complexity. On the other hand, as
the number of pixels used increases, the number of non-zero coefficients
increases very quickly, leading to an increase in computational complexity.
Fig. 1(c) shows a timing breakdown of the learning step on a CPU. We can

No. of sample warps

(x1000)

Template width

(pixels)

N
o
n
-z

e
ro

 

co
e
ffi

ci
e
n
ts

(x
1

0
6
)

(a) (b) (c)

Evaluation
Inversion
Copying

Timing breakdown

(CPU)

Figure 1: A deeper look at the computational complexity of our proposed
method.

1



3 gpu acceleration 2

Patt. 2 Patt. 3

sym (GPU)
sym (CPU)

Patt. 1

Figure 2: Influence of path sampling patterns on performance.

...

...

...

...
...
...
...

...
Coefficient 200

Coefficient 3

Coefficient 2

Coefficient 1

W
or

kg
ro

up
 1

W
or

kg
ro

up
 2

W
or

kg
ro

up
 3

W
or

kg
ro

up
 2

00
0

Sequential memory

Figure 3: Memory layout of workgroup model for GPU calculation with 2000

workgroups and 200 entries per workgroup.

see that for a small image patch, most of the computational resources goes
towards computing the linear predictor, and very little time goes towards
matrix inversion.

Further, we also investigated the trade-off between accuracy and compu-
tational efficiency via different patch sampling methods. We experimented
with three different patch sampling patterns as shown in Fig. 2. The result
shows that while pattern 3 provides a good trade-off between computational
complexity and accuracy.

3 gpu acceleration

In this section we provide more details on the GPU implementation of our
proposed method. Our proposed method involves computing the linear term
PET from the tensor Y and the quadratic term EET from the tensor Q, where
each column along the depth dimension of the tensor consists of pixel indices
and coefficient values. We store the image patch in constant memory, a small
amount of memory, usually 64kB on newer cards, which allows faster access
times compared to global memory. It is also possible to store the image patch
in shared memory, and we found that the choice of either constant or shared
memory is dependent on the specific card used. The pixel indices and their
corresponding coefficient values are stored in global memory as each pixel
index and coefficient value is only accessed once.

As each entry in the linear and quadratic term consists of variable sized
linear and quadratic combinations respectively, we divide the computation
into a number of workgroups, where each workgroup is responsible for the
same number of computations. As the number of terms in the combination
is not likely to be integrally divisible by the workgroup size, there will be
one workgroup with more computations required. This is accounted for by
just setting the associated coefficients in the workgroup to zero. Further, in



4 error prediction dataset 3

(a) Increasing no. of 
sample warps (x1000) 

(b) Increasing template
width (pixels)

(b) Increasing translational
motion (pixels)

tr
a
in

in
g
 t

im
e
 (

m
s)

Figure 4: GPU timings for different training settings on an NVIDIA 1080

card.

Reference
image

Other
viewpoints

Figure 5: Thumbnails of data set used for error prediction experiment.

order to ensure efficient memory access, we design the GPU implementation
such that threads executing in parallel are accessing sequential locations in
memory. This means that sequential memory accesses the same coefficient
and pixel value, but for different workgroups. An illustration of the memory
layout is shown in Fig. 3.

Similar to the CPU implementation, the time required to train a Linear
Predictor on the GPU depends on the number of non-zero coefficients. Fig.
4 shows the timings for the synthetic data experiment in the paper, obtained
using an NVIDIA 1080 card with 10 workgroups for the linear term and 100

workgroups for the quadratic term. We see that the training time does not
increase much with the number of sample warps, but it increases with the
number of pixels used as well as the translational motion. This is in line with
the timings of the CPU implementation.

4 error prediction dataset

Finally, for completeness, here we provide the thumbnails of the images used
for the final experiment in Sec. 6.3 of the paper, shown in Fig. 5 where the
images on the left column were used to extract the keypoints and the image
patches for training the Linear Predictors, and the other images were used to
obtain point correspondences with the first image in the data set.


	Derivation of Error Prediction Equation
	Additional Results from Synthetic Experiment
	GPU Acceleration
	Error Prediction dataset

