
6. Supplementary: Proof of Theorem 3.1
Denote the input n-by-12 matrix by L. Denote by θ the

codeword obtained by the encoder. Now we prove if the
input is PL where P is an n-by-n permutation matrix, the
codeword obtained from the encoder is still θ.

The first part of the encoder is a per-point function, i.e.,
the 3-layer perceptron is applied to each row of the input
matrix L. Denote the function by f1. Then, it is obvious
that f1(PL) = Pf1(L). The second part computes (2).
Now we prove that for (2),

PY = Amax(PX)K. (4)

Since Y = Amax(X)K, we only need to prove

Amax(PX) = PAmax(X). (5)

Suppose the permutation operation P makes the i-th row of
PX equal to xπ(i), where π(·) is a permutation function on
the set of row indexes {1, 2, . . . , n}. Then, from (3), the
(i,j)-th entry of the matrix Amax(PX) is

(Amax(PX))ij = ReLU(max
k∈N (π(i))

xkj). (6)

In the meantime, the (π(i),j)-th entry of Amax(PX) is

(Amax(X))π(i)j = ReLU(max
k∈N (π(i))

xkj). (7)

Since the right hand side of (6) and (7) are the same, we
know that the matrix Amax(PX) can be obtained by chan-
ging the i-th row of Amax(X) to the π(i)-th row, which me-
ans Amax(PX) = PAmax(X). Thus, we have proved that
for the second part of the encoder, permuting the input rows
is equivalent to permuting the output rows, i.e., (4) holds.

Therefore, if we permute the input to the encoder, the
output of the graph layers also permute. Then, we apply
global max-pooling to the output of the graph layers. It is
obvious that the result remains the same if the rows of the
input to the global max-pooling layer (or the output of the
graph layers) permute. The conclusion of Theorem 3.1 is
hence proved.

7. Supplementary: Proof of Theorem 3.2
We prove the existence-based Theorem 3.2 by explicitly

constructing a 2-layer perceptron and a codeword vector θ
that satisfy the stated properties.

The codeword is simply chosen as the vectorized
form of the point cloud matrix S. In particular, For a
matrix S of size m-by-3, if S = [sjk], j = 1, 2, . . .m
and k = 1, 2, 3, the codeword vector θ is chosen to be
θ = [s11, s12, s13, s21, s22, s23, . . . , sm1, sm2, sm3].
Then, the i-th row after concatenation is vi =
[xi, yi, s11, s12, s13, s21, s22, s23, . . . , sm1, sm2, sm3],

where [xi, yi] is the position of the i-th 2D grid point.
Suppose the 2D grid points have an interval 2δ, i.e., the
distance between any two points in the 2D grid is at least
2δ. Further assume these m grid points can all be written as
[xi, yi] = [(2βi + 1)δ, (2γi + 1)δ], where βi and γi are two
integers whose absolute values are smaller than a positive
constant M . One example of a set of 4-by-4 grid points is

{[−3δ,−3δ], [−3δ,−1δ], [−3δ, 1δ], [−3δ, 3δ],
[−1δ,−3δ], [−1δ,−1δ], [−1δ, 1δ], [−1δ, 3δ],
[1δ,−3δ], [1δ,−1δ], [1δ, 1δ], [1δ, 3δ],
[3δ,−3δ], [3δ,−1δ], [3δ, 1δ], [3δ, 3δ]}.

(8)

In this case, the choice of M is 4. Also assume that the
output point cloud is bounded inside 3-dimensional box of
length 2 centered at the origin, i.e., |sij | ≤ 1.

Now, we construct a 2-layer perceptron f that takes
the rows vi as inputs and provides the outputs f(vi) =
[si1, si2, si3], for i = 1, 2, . . . ,m. The input layer takes the
vector intput vi which has 3m+2 scalars. The hidden layer
has 3m neurons. The output layer provides three scalar out-
puts [si1, si2, si3]. The 3m neurons in the hidden layer are
partitioned into m groups of 3 neurons. The k-th neuron
(k = 1, 2, 3) in the j-th group (j = 1, 2, 3, . . . ,m) is only
connected to three inputs xi, yi and [sj,k], and it computes
a linear combination of xi, yi and sj,k with weights

αj1 = u2xj ,

αj2 = uyj ,

αj3 = 1,

(9)

and bias
b = −u2x2j − uy2j (10)

where u is a positive constant to be specified later. Suppose
the linear combination output is yj,k. The linear combi-
nation is followed by a nonlinear activation function1 that
computes the following

zj,k =

{
yj,k, if |yj,k| < c,
0, if |yj,k| ≥ c,

(11)

where c is a constant to be specified later. The outputs of
the activation functions are linearly combined to produce
the final output. There are three neurons in the output layer.
The k-th neuron (k=1,2,3) computes

wk =

m∑
j=1

zj,k. (12)

1It is not hard to prove that this function can be obtained by concate-
nating ReLU functions with appropriate bias terms. We specifically avoid
using the ReLU function in order not to hinder the main intuition. In all of
our experiments, we use ReLU activation functions.

We assume the parameters (δ, u, c,M) satisfy

u > 0, c > 0, δ > 0,M > 0, (13)

uδ2 > c+ 1, (14)

u > 8M2 + 4M + 1, (15)
c > 1. (16)

Now we prove that for this perceptron, the final out-
put [w1, w2, w3] is indeed [si1, si2, si3] when the input
to the perceptron is vi. For the i-th input vi =
[xi, yi, s11, s12, s13, s21, s22, s23, . . . , sm1, sm2, sm3], the
k-th neuron in the j-th group in the hidden layer compu-
tes the following linear combination

yj,k =αj1xi + αj2yi + αj3sj,k + b

=u2xjxi + uyjyi + sj,k − u2x2j − uy2j
=u2xj(xi − xj) + uyj(yi − yj) + sj,k.

(17)

Notice that we have assumed [xi, yi] = [(2βi + 1)δ, (2γi +
1)δ],∀i. So we have

yj,k = u2xj(xi − xj) + uyj(yi − yj) + sj,k

=2u2δ2(2βj + 1)(βi − βj) + 2uδ2(2γj + 1)(γi − γj) + sj,k

=u2δ2m1 + uδ2m2 + sj,k,

(18)

where the two integer constants m1 = 2(2βj +1)(βi − βj)
andm2 = 2(2γj+1)(γi−γj), andm1 = 0 only if xi = xj
and m2 = 0 only if yi = yj . Since the absolute values of
βi, βj , γi and γj are all smaller than M , we have

|m1| ≤ 2|2βj+1|·|βi−βj | < 2(2M+1)·2M = 8M2+4M.
(19)

Similarly, we have

|m2| ≤ 2|2γj+1|·|γi−γj | < 2(2M+1)·2M = 8M2+4M.
(20)

Now we consider 3 possible cases:

• |m1| ≥ 1: In this case,

|yj,k| =|u2δ2m1 + uδ2m2 + sj,k|
>u2δ2|m1| − uδ2|m2| − |sj,k|
>u2δ2 − uδ2(8M2 + 4M)− 1

=uδ2[u− (8M2 + 4M)]− 1

(a)
> (c+ 1) · 1− 1 = c,

(21)

where step (a) follows from the assumption (14).

• m1 = 0 but |m2| ≥ 1: In this case,

|yj,k| =|uδ2m2 + sj,k|
≥uδ2|m2| − |sj,k|

≥uδ2
(a)

≥ c+ 1 > c,

(22)

where step (a) follows from assumption (15).

• m1 = m2 = 0. In this case,

|yj,k| = |sj,k| ≤ 1
(a)
< c, (23)

where step (a) follows from assumption (16).

Notice that the first two cases are equivalent to i 6= j and
the last case is equivalent to i = j. Thus, from (11), we
have

zj,k =

{
sj,k, if j = i,
0, if j 6= i.

(24)

Thus, from (12), the final output is

wk =

m∑
j=1

zj,k = si,k, k = 1, 2, 3, (25)

which means the output is indeed [si,1, si,2, si,3] when the
input is vi. This concludes the proof.

8. Supplementary: Decoder Variations
The current decoder design has two consecutive folding

operations that apply on a 2D grid. Therefore, one may
wonder if the performance of FoldingNet can be improved
if we utilize (1) more folding operations or (2) the same
number of folding operations on regular grids of different
dimensions. In this section, we report the results for these
different settings. The experimental settings are the same
with Section 4.6. The experiment results are shown in Ta-
ble 6. As one can see from line 1 and line 2, increasing the
number of folding operations does not significantly incre-
ase the performance. Comparing line 1 and line 3, one can
see that a 2D grid is better than a 1D grid for both classifi-
cation and reconstruction. From line 1 and line 4, one can
see that a 3D grid only brings a marginal improvement. As
we discussed in the introduction, this is because the intrin-
sic dimensionality of data in the ShapeNet and ModelNet
datasets is 2, as they are sampled from object surfaces. If
point clouds are intrinsically volumetric, we believe using
a 3D grid in the decoder is more suitable. In addition, we
also tried to generate the fixed grid by uniformly random

Grid Setting #Folds Test Cls. Acc. Test Loss
regular 2D 2 88.25% 0.0296
regular 2D 3 88.41% 0.0290
regular 1D 2 86.71% 0.0355
regular 3D 2 88.41% 0.0284
uniform 2D 2 87.12% 0.0321

Table 6. Comparison between different FoldingNet decoders.
“Uniform”: the grid is uniformly random sampled. “Regular”:
the grid is regularly sampled with fixed spacings.

sampling in the square. However, it leads to slightly worse
results. We believe it is caused by the local density variation
introduced by the random sampling.

9. Supplementary: Folding by Deconvolution
The folding operation in Definition 1 is essentially

a per-point 2D-to-3D function from a 2D grid to a 3D
surface. A natural question to ask is whether introdu-
cing explicit correlations in the functions imposed on
neighboring grid points can help improve the perfor-
mance. We noted that there is a closely related work on
reconstructing 3D point sets using side information from
images [17]. The point reconstruction network in [17]
uses deconvolution to fuse information on the regular grid
structure imposed by the image, which is similar to the
idea above. Here, we compare a deconvolution network
with FoldingNet on the reconstruction performance. The
feature sizes of the deconvolution network (C×H×W) are
512×1×1→256×3×3→128×5×5→64×15×15→3×45×45
with kernel sizes 3, 3, 5, 5. The comparison is shown in
Table 7. We conjecture that deconvolution goes beyond
point-wise operations, thus imposes a stronger constraint
on the smoothness of the reconstructed surface. Thus,
its reconstruction is worse (although with comparable
classification accuracy). On the other hand, the use of
grids with point-wise MLP in FoldingNet only impose an
implicit constraint, thus leading to better reconstructions.

Cl. Acc. Tst. Loss # Params.
FoldingNet 88.41% 0.0296 1.0×106

Deconv 88.86% 0.0319 1.7×106

Table 7. Comparison of two different implementations of the fol-
ding operation.

10. Supplementary: Robustness of the graph-
based encoder

Here, we use one experiment to show that the graph-
pooling layers are useful in maintaining the good perfor-
mance of the FoldingNet when the data is subject to random
noise. The following experiment compares FoldingNet with
a deep auto-encoder that has the same folding-based de-
coder architecture but a different encoder architecture in
which the graph-based max-pooling layers are removed.
The setting of the experiment is the same as in Section 4.6
except that 5 percents of the points in each point cloud in
the ModelNet40 dataset are randomly shifted to other posi-
tions (but still within the bounding box of the original point
cloud). We use this noisy data to see how the performan-
ces degrade for the graph-based encoder and the encoder
without graph-based max-pooling layers. The results are
reported in Figure 6. We can see that when the graph-based

0 100 200 300 400

Training epochs

0.75

0.8

0.85

0.9

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

0.035

0.04

0.045

0.05

R
e

c
o

n
s
tr

u
c
ti
o

n
 l
o

s
s
 (

c
h

a
m

fe
r

d
is

ta
n

c
e

)Comparing Encoders with or without Graph Layers

Graph-based Encoder

Encoder without Graph Layers

Figure 6. Comparison between the graph-based encoder in
Section 2.1 and the encoder from which the graph-based max-
pooling layers are removed. The encoder with no graph-based
layers is similar to the one proposed in [41] which is for a different
goal (supervised learning).

max-pooling layers are removed, the performance degrades
by approximately 2 percents when noise is injected into the
dataset. However, the classification accuracy of Folding-
Net does not change much (when compared with Figure 5
in Section 4.6). Thus, it can be seen that the graph-based
encoder can make FoldingNet more robust.

11. Supplementary: More Details on the Li-
near SVM Experiment on ModelNet10

The classification accuracy obtained in Section 4.4 on
MN10 dataset is 94.4%. We stated in Section 4.5 that many
pairs which are wrongly classified are actually hard to dis-
tinguish even by a human. In the table on the next page,
we list all the incorrectly classified models and their point
cloud representations. A phrase like “table→ desk” means
the point cloud has label “table” but it is wrongly classified
as “desk” by the linear SVM.

toilet→ bed toilet→ bathtub toilet→ chair

dresser→ night stand dresser→ night stand dresser→ night stand

dresser→ night stand dresser→ night stand dresser→ night stand

dresser→ night stand dresser→ night stand monitor→ dresser

desk→ table desk→ table desk→ sofa

desk→ night stand desk→ table desk→ sofa

desk→ table desk→ table bathtub→ bed

bathtub→ table bathtub→ bed bathtub→ table

bathtub→ bed table→ desk table→ desk

table→ desk table→ desk table→ desk

table→ desk table→ desk table→ desk

table→ desk table→ desk table→ night stand

sofa→ night stand night stand→ dresser night stand→ dresser

night stand→ dresser night stand→ dresser night stand→ dresser

night stand→ dresser night stand→ dresser night stand→ dresser

night stand→ dresser night stand→ dresser night stand→ table

night stand→ dresser night stand→ table chair→ bed

