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In this supplementary material, we present additional

scale estimation results and overhead visualizations for

datasets from Wilson and Snavely [2] and Heinly et al. [1];

we also provide ablative analyses of the various parts of

our approach. See also our supplementary video, which

contains flyovers of our reconstructed crowds and ground

surfaces for the four larger datasets analyzed in our pa-

per. This video contains comparative visualizations of 1)

the representative subset of individuals selected by our set

cover formulation, 2) all people and photographers placed

by our method, and 3) the original static reconstructions

from multi-view stereo that lack people and ground sur-

faces. Our visualizations clearly show the benefits of recov-

ering people and ground in these otherwise “lifeless” and

incomplete reconstructions.

1. Results on Additional Datasets

Here, we present additional quantitative results of the

scene scale estimates produced by our method (Table 1).

These results cover 15 scenes in addition to those presented

in our paper: three from [2] (Tower of London, Trafalgar

Square, and Union Square Park), and 12 from [1]. For

each dataset, we also provide a top-down view of our per-

son placements based on the gravity direction estimated by

our method, and we show a comparative aerial image from

Google Earth. As in the paper, green dots show the place-

ment of detected individuals, red dots show locations for

photographers, and black dots show static scene structure.

In general, our placements for detected people into the

scene reflect the actual structures where people walk, par-

ticularly along sidewalks. Places where people do not walk

(e.g., the fountains in Trafalgar Square) contain low den-

sities of (likely mis-detected) people. The accurate scale

estimates presented in the paper and above provide addi-

tional evidence as to the correctness of these placements.

We also note that there were failure cases on other scenes,

such as the Statue of Liberty (not shown), that were pri-

marily caused by a large number of false person detections

on human-like statues. These false detections are also vis-

ible in the water of the Trevi Fountain, below; however,

the scene conditions in that case did not appear to nega-

tively influence the result. We also empirically find that our

method’s accuracy is generally higher in scenes having 1)

a larger number of person detections and 2) more complete

static reconstructions obtained via Structure-from-Motion.

The former condition provides greater support for approxi-

mate semantic triangulation, while the latter is important for

enforcing visibility constraints, which are helpful in avoid-

ing under-estimation of the length of one unit in the recon-

struction space.

Scene Error np nc

Brandenburg Gate -7.2% 5115 1131

British Museum +0.3% 2925 507

Buckingham Palace -5.9% 4972 1257

Hōzōmon Temple, Tokyo -1.5% 1768 230

Lincoln Memorial +6.5% 875 183

Palace of Westminster -8.8% 331 496

Pike Place Market, Seattle +8.5% 1081 312

Sacré Cœur, Paris -0.3% 1705 782

Taj Mahal -1.1% 395 805

Tōdai-ji Temple, Nara -2.1% 2419 733

Tower Bridge, London -2.6% 213 125

Tower of London -4.7% 551 381

Trafalgar Square +3.2% 13306 4328

Trevi Fountain -3.3% 4934 2343

Union Square Park, NYC -4.5% 2833 1023

Table 1. Quantitative results on our method for scale and place-

ment. “% Error” gives the amount that we over/under-estimated

the distance of one unit in the reconstruction. np and nc show the

number of placed detected people and photographers, respectively,

recovered by our method.

2. Ablative Analysis

We provide additional analysis on the various parts of

our reconstruction pipeline. Our algorithm has two general

stages: scale voting and scale refinement. The scale voting

stage serves to initialize the subsequent refinement. Here,

we demonstrate that both stages are necessary to produce a

satisfactory result, and we also show how different parame-



ter selections affect the end result in both stages.

2.1. Visibility Constraint During Voting

We first analyze the effect of removing the visibility con-

straint (Eq. (7)) during our scale voting procedure. The vis-

ibility constraint is necessary at this stage, but using the

constraint alone is not sufficient to obtain the scene scale.

Fig. 1 shows the effect of turning off the constraint for our

Campitelli model. Because the (model-space) neighbor-

hood radius in Eq. (5) generally grows faster w.r.t scale than

pairwise person distances, using the neighborhood term

alone will result in artificially high overlap at larger scales.

The visibility constraint is thus important to rule out impos-

sible person placements.
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Figure 1. Our scale voting scheme with (blue) and without (or-

ange) the visibility constraint. The ground-truth scale is near 0.01

reconstruction units per meter.

Fig. 2 demonstrates that the visibility constraint alone is

not sufficient for determining the scene scale. For each de-

tection in the Campitelli model, we compute the ratio of

our estimated neck distance s||Ni|| to the visibility thresh-

old vi(s) (c.f. Eq. (7)) for the ground-truth scene scale, and

for ±10% and ±20% of this scale. We sort these ratios

across all individuals and plot them. At the correct scale,

individuals adjacent to static structures will have a ratio of

∼1. We observe that false detections and mis-estimations

of the neck distance (having ratios much greater than one)

make this condition ambiguous. Our approximate triangu-

lation approach is thus necessary to obtain an initial scale.
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Figure 2. Ratio of our estimated neck distance s||Ni|| to the

visibility threshold vi(s) for the ground-truth scale (GT), and for

larger/smaller scales. Values are sorted and clipped to [0.5, 1.5].

2.2. Effect of Scale Refinement Terms in Eq. (14)

There are three optimization terms in our scale refine-

ment stage: a height prior, a local planarity penalty, and

a visibility constraint. Our algorithm requires the local

planarity term – without it, the optimal solution is to set

the scale to an infinitesimal positive value (maximizing

Eq. (13)) and each hi to the most probable height. Table 2

shows our estimated scales with the height and visibility

terms removed. The effect of the height prior varies be-

tween datasets, but we generally find better scale estimates

when the constraint is included. The visibility constraint

is intended for scenes with fewer individuals, to help pre-

vent scale over-estimation caused by fewer well-supported

neighborhoods.

2.3. Effect of Parameters during Refinement

To investigate the sensitivity of our algorithm to param-

eter changes, Table 2 further shows results after modifying

the four major tunable parameters of Section 3.3 (photog-

rapher camera height βc, “overshooting” threshold τo, pla-

narity penalty λ, and the xz neighbor threshold) by ±10%.

The relative scale differences are generally small, and we

observe only minor changes in the estimated 3D positions

of the detected individuals.

2.4. Comparing Scale Voting and Scale Refinement

Finally, the 3rd and 4th columns of Table 2 show the scale

improvement of our refinement stage vs. our initial voting.

For many datasets, the refined scale estimate is closer to the

ground truth. Since the local planarity term is the driving

factor in our refinement step, this result supports the notion

that the person placement (including the initial 3D triangu-

lation) is an important component of our approach.

Scene GT Initial Final No Height No Vis. -10% +10%

Cornell Quad 0.0269 0.0259 0.0280 0.0278 0.0294 0.0282 0.0272

Dubrovnik 0.0200 0.0183 0.0200 0.0199 0.0195 0.0197 0.0198

Pantheon 0.0913 0.0799 0.0873 0.0912 0.0877 0.0877 0.0874

Campitelli 0.0104 0.0097 0.0102 0.0102 0.0103 0.0102 0.0102

San Marco 0.0379 0.0336 0.0380 0.0375 0.0367 0.0383 0.0385

Alamo 0.1350 0.1253 0.1346 0.1323 0.1363 0.1320 0.1351

NYC Library 0.1437 0.1262 0.1418 0.1553 0.1442 0.1429 0.1403

Piccadilly 0.1216 0.1263 0.1290 0.1442 0.1329 0.1289 0.1275

Brandenburg Gate 0.1266 0.1287 0.1365 0.1433 0.1369 0.1356 0.1356

British Museum 0.3913 0.2793 0.3900 0.3434 0.4014 0.3923 0.3877

Buckingham Palace 0.0629 0.0604 0.0668 0.0776 0.0663 0.0662 0.0658

Hōzōmon Temple 0.5651 0.5070 0.5739 0.4642 0.5941 0.5797 0.5689

Lincoln Memorial 0.1161 0.1086 0.1090 0.1217 0.1093 0.1100 0.1080

Palace of Westmin. 0.0259 0.0280 0.0284 0.0298 0.0287 0.0289 0.0296

Pike Place Market 0.1840 0.1314 0.1696 0.1462 0.1754 0.1678 0.1704

Sacré Cœur 0.0507 0.0477 0.0509 0.0512 0.0503 0.0499 0.0502

Taj Mahal 0.0475 0.0420 0.0481 0.0488 0.0497 0.0491 0.0475

Tōdai-ji Temple 0.1340 0.1251 0.1369 0.1563 0.1380 0.1369 0.1354

Tower Bridge 0.2166 0.2391 0.2223 0.2391 0.2238 0.2244 0.2205

Tower of London 0.0484 0.0479 0.0507 0.0497 0.0517 0.0513 0.0498

Trafalgar Square 0.0700 0.0628 0.0678 0.0679 0.0673 0.0700 0.0671

Trevi Fountain 0.3179 0.2538 0.3288 0.3571 0.3278 0.3335 0.3213

Union Square 0.1380 0.1276 0.1430 0.1568 0.1427 0.1422 0.1416

Table 2. GT: Ground-truth scene scales (reconstruction units per

meter). Initial/Final: Estimates from our voting and refinement

stages. No Height/Vis.: Height/visibility terms removed. ±10:

With modified parameters. Red cells: Results where the estimated

length of one unit in the reconstruction was incorrect by >10%.
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