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Dataset Pre-Aug Post-Aug
AFLW-PIFA (PCD-CNN-Fast) 2.85 2.81
AFW (PCD-CNN-Fast) 2.80 2.66
AFLW-PIFA (PCD-CNN-C+C) 2.49 2.40
AFW (PCD-CNN-C+C) 2.52 2.36
COFW (PCD-CNN-Fast) 6.02 5.77
300W-Challenge (PCD-CNN-Fast) 7.62 7.17

Table 1: NME on different datasets Pre-Augmentation and
Post-Augmentation during testing.

1. Improvement in localization by augmenta-
tion during testing

For a fair comparison with the previous state-of-the-art
methods we did not perform augmentation during testing.
In the next set of experiments along with the test image,
we also pass the flipped version of it and the final output
is taken as the mean of the two outputs. With experimen-
tation we observe that data augmentation while testing also
improves the localization performance. This does not in-
cur any increase in run-time as the inputs can be passed
through the network in batch mode, keeping the runtime
still at 20FPS. Table 1 shows the effects of data augmenta-
tion during testing.

2. Effect of Pose Disentaglement
Next, we also perform an experiment to observe the ef-

fect of 3D pose conditioning on the second auxiliary net-
work designed for fine grained localization. Table 2 shows
the effect of disentangling pose by conditioning, when the
auxiliary conv-deconv network does not receive informa-
tion from the PoseNet.

3. Magnified version of the Tree
One expects to receive information from all other key-

points in order to optimize the features at a specific key-
point. However, this has two drawbacks: First, to model

Method NME
PCD-CNN + Auxiliary Network 2.99
PCD-CNN + Pose Conditioned Auxiliary Network 2.49

Table 2: Mean square error normalized by bounding box
calculated on AFLW test set following PIFA protocol.
When PCD-CNN and fine-grained localization network
both are conditioned on pose yields lower error rate.

the interaction between keypoints lying far away such as
‘eye corner’ and ‘chin’, convolution kernels with larger size
have to be introduced. This leads to increase in the num-
ber of parameters. Secondly, relationships between some
keypoints are unstable, such as ‘left eye corner’ and ‘right
eye corner’. In a profile face image one of the points may
not be visible and passing information between those two
keypoints may lead to erroneous results. Hence, convolu-
tion kernels are learned at the size of 14×14 which ensures
keypoints which are closer and have stable relationships to
be connected together.

We also describe the process of extending the proposed
dendritic structure of facial landmarks to other datasets with
variable number of landmark points. Figure 4a shows the
tree structure of the 21 landmark points compatible with the
AFLW dataset. In figure 4b and 4c the number of points is
increased to 29 and 68 respectively compatible with COFW
and 300W datasets. We wish to keep the structure of the fa-
cial landmarks intact while increasing the number of land-
mark points. For this, we make use of the network surgery.
First, the number of deconvolution filters in the penultimate
and ultimate deconvolution layers is increased to 128 and
64 respectively. Next 1× 1 convolutions are used to obtain
desire number of outputs, which is then sliced and concate-
nated in order for loss computation. For instance, eye center
points is split into 4 landmark points in the case of COFW
and 300W datasets, and ear corner points are dropped. An
advantage of network surgery is that, it leads to yielding a
variable number of landmark points with minimal increase
in parameters while keeping the face structure intact.
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4. Training Details

KeypointNet and PoseNet described in section 3 are de-
signed based on the SqueezeNet architecture, attributing its
lower parameter count. The proposed PCD-CNN was first
trained using AFLW training set, where Mask-Softmax is
used for keypoints and Euclidean Loss for 3D pose estima-
tion. Starting from the learning rate of 0.001, the network
was trained for 10 epochs with momentum set to 0.95. The
learning rate was dropped by a factor of 10 every 3 epochs.
While training PCD-CNN for COFW and 300W datasets,
the convolution branch was initialized with the previously
trained network, whereas the deconvolution branches were
trained from scratch. Since, COFW and 300W datasets does
not provide 3D pose ground truth, we leverage the previ-
ously trained PoseNet and freeze its weights. As shown in
the section 3 of the main paper, disentangling pose by con-
ditioning improves the localization performance.

4.1. Training PCD-CNN for COFW

This section covers the details of training for the COFW
dataset. The PCD-CNN network was trained using the
Mask Softmax and hard negative mining. The second auxil-
iary network was trained for the task of occlusion detection.
According to the released details about the COFW dataset,
around 23% of the landmark points are invisible. Hence, to
tackle the class imbalance problem between the visible and
invisible points the following loss function was used.

L(p, g) =

29∑
i=1

(0.23∗1gvis
i =1+0.77∗1gvis

i =0)(p
vis
i −gvisi )2

(1)
where p, g are the vector of predicted and ground-truth vis-
ibilities. pvisi and gvisi are the values of the individual ele-
ments in the vectors of visibilities. The weighted loss func-
tion also balances the gradients back-propagated while loss
calculation.

Figure 1 shows the failure rate and error rate on the
COFW dataset. The failure rate on the COFW dataset drops
to 4.53% bringing down the error rate to 6.02. When test-
ing with the augmented images the error rate further drops
to 5.77 bringing it closer to human performance 5.6. Figure
3a shows the precision recall curve for the task of occlusion
detection on the COFW dataset. PCD-CNN achieves a sig-
nificantly higher recall of 44.7% at the precision of 80% as
opposed to RCPR’s [1] 38.2%.

5. Hard mining

Figure 2 shows the distribution of average normalized
error on the training sets of AFLW and COFW datasets.
The error distributions were obtained upon evaluating the
PCD-CNN network on the training set, after it is trained

Figure 1: Comparison of NME and failure rate over visible
landmarks out of 29 landmarks from the COFW dataset.

(a)

(b)

Figure 2: Histogram of error, when evaluated on the training
set of (a) AFLW (b) COFW.

with the whole dataset for 10 epochs. The dataset is parti-
tioned into hard and easy samples after choosing the mode
of the distribution as the threshold. Next, the network is
trained again, by sampling equal number of images from
both groups, which results in an effective reuse of the hard
examples.
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(a) (b)

(c) (d)

Figure 3: (a) Precision Recall for the occlusion detection on the COFW dataset. (b)Cumulative error distribution curves
for pose estimation on AFW dataset. The numbers in the legend are the percentage of faces that are labeled within ±15◦

error tolerance. Cumulative Error Distribution curve for (c) Helen (d) LFPW, when the average error is normalized by the
bounding box size.

(a) (b) (c)

Figure 4: The proposed extension of the dendritic structure from Figure 1 of the main paper, generalizing to other datasets
with variable number of points.
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Figure 5: Qualitative results generated from the proposed method. The green dots represent the predicted points. Every two
show randomly selected samples from AFLW, AFW, COFW, and 300W respectively with all the visible predicted points.
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6. More results on AFLW, AFW, LFPW and
HELEN

In this section, we show some more results obtained by
the PCD-CNN on AFW, LFPW and Helen datasets. Figure
3b shows the cumulative error distribution curves for the
prediction of face pose on AFW dataset. We observe that
even though the primary objective of PCD-CNN is not pose
prediction, it achieves state-of-the-art results when com-
pared to recently published works Face-DPL [4],RTSM [2].

Figures 3c and 3d show the cumulative error distribution
curve on LFPW and Helen datasets, when the average error
is normalized by face size. PCD-CNN achieves significant
improvement over the recent work of GNDPM [3].

Figure 5 shows some of the difficult test samples from
AFLW, AFW, COFW and IBUG datasets respectively.
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