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Abstract

In this document, to facilitate future reimplementation of
our work, more details of experiment and message passing
scheme are provided. Additional qualitative results, which
are not covered in the submission due to the page limit, are
reported. Moreover, detail annotations and representative
examples of the proposed WFLW Dataset are demonstrated.

1. Implementation Details

All training images are cropped and resized to 256×256
according to bounding boxes provided by datasets. Then,
standard data augmentation is performed including transla-
tion (±30 pixels), rotation (±20 degrees), scaling (±15%)
and flip to make the model more robust to data variations.

In this work, for comparison with state-of-the-arts, the
estimator is stacked four times if not specially indicated in
our experiment. For ablation study, the estimator is stacked
two times due to the consideration of time and computation
cost. To get our baseline regressor and effectiveness dis-
criminator, a res-18 [2] network is modified by adding two
fully-connected layers with 256 units for the final predic-
tion. All our models are trained with Caffe. We use stochas-
tic gradient descent (SGD) to optimise the network on 4 Ti-
tan X GPUs with a mini-batch size of 8 for 2000 epochs.
We set weight decay and momentum equal to 0.0005 and
0.9 respectively. The learning rate is initialised as 2× 10−5

and is dropped by 5 at the 1000th and the 1500th epoch.
Empirically, σ is set to 1, θ is set to 1.5 and δ is set to 0.8 in
our experiments. Details of all evaluation settings for dif-
ferent experiments are noted in Table 1.

∗This work was done during an internship at SenseTime Research.

2. Details of Message Passing
Specifically, the message passing layers can be effec-

tively implemented by a series of convolution and entry-
wise sum operation. With an attached loss in each stack of
hourglass, these message layers can be jointly learnt with
kernels of the network. As illustrated in Fig. 1, denote ht as
the feature with 256 channels obtained by a 1× 1 convolu-
tion at the end of stack t. Each boundary i in stack t before
message passing can be represented as feature At

i with 16
channels calculated as follows:

At
i = f(ht ∗wat

i) (1)

where wat
i denotes the filter bank for boundary i, ∗ denotes

convolution and f is the nonlinear activation function. The
refined feature for boundary i in stack t after message pass-
ing is denoted by A′

t
i.

As a concrete example, we demonstrate the positive mes-
sage passing process to boundary 6 (left eyebrow) in stack
2. Following the tree structure of our method, left eyebrow
in stack 2 catches messages from two nodes, i.e., boundary
2 (left upper eyelid) in stack 2 and boundary 6 (left eye-
brow) in stack 1. Thus, the refined feature for boundary 6 in
stack 2 after receiving information from intra and inter-level
boundaries can be formulated as follows:

A′
2
6 = f(A2

6 +A′
2
2 ∗wa2

2,a
2
6 +A′

1
6 ∗wa1

6,a
2
6) (2)

where + donetes entrywise sum, A2
6, which can be calcu-

lated by Eq. 1, denotes the feature before updated. A′
2
2 ∗

wa2
2,a

2
6 denotes the meassage comes from intra-level bound-

ary A′
2
2, by a collection of convolution kernels wa2

2,a
2
6 .

A′
1
6 ∗wa1

6,a
2
6 denotes the meassage comes from inter-level

boundary A′
1
6, by wa1

6,a
2
6 . Also, A′22 and A′

1
6 can be it-

eratively calculated until meeting the leaf node of the tree
model.
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Figure 1: An illustration of the detail of message passing scheme. We take stack 1 and stack 2 for example.

A same tree structure with opposite direction is also used
to pass information in a reverse flow. The refined feature
B′

t
i obtained by opposite direction tree and A′

t
i are concate-

nated together to get the final predicted heatmap as follows:

M̂ t
i = (A′

t
i ⊕B′

t
i) ∗w′

at
i (3)

where ⊕ represents concatenation, w′a
t
i is a 1× 1 convolu-

tion filter bank to get the single channel predicted heatmap
for boundary i in stack t. Each stack of hourglass network
predicts K heatmaps M̂ t = {M̂i}Ki=1 and a loss is attached
at the end of each stack defined by the Mean Squared Error
(MSE):

LG =
1

2N

N∑
i=1

K∑
i=1

‖M̂ t
i −M t

i ‖22 (4)

where N is the number of samples.

3. Qualitative Evaluation of Boundary Cues
To demonstrate the guidance effect of boundary infor-

mation on the learning of landmarks regressor, we visu-
alise the feature maps sampled at two stages with resolu-
tion 64× 64 and 32× 32 respectively. For comparison, vi-
sualisation results of a “Res-18” baseline network without
boundary information are also shown in Fig. 2. It can be
clear seen that, with boundary information incorporated in,
feature maps tend to be more focused on facial boundaries
than the baseline network. These boundary-guided feature
maps will greatly ease the learning of landmarks regressor
and thus enhance the efficiency of network parameters.

4. Qualitative Results
Additional qualitative results are illustrated in this sec-

tion. As shown in Fig. 3, even with severe occlusion,
the estimated boundary heatmaps of our method are still
very plausible and focused. With the help of boundary

cues, the predicted landmarks are also shown to be ro-
bust to the occluded parts. To evaluation of the robust-
ness of our method to challenging variations of expres-
sion, illumination and view changes, we demonstrate the
estimated boundary heatmaps and predicted landmarks on
300W Challenging Set in Fig. 4. Both of the boundary
and landmark results are shown to be robust to several rep-
resentative hard examples. Moreover, visualisation results
of landmark localisation on COFW-29 (29 landmarks) and
AFLW-Full (19 landmarks) with the help of cross-dataset
boundary cues are shown in Fig. 5 and Fig. 6 respectively.

5. Wider Facial Landmark in the Wild

On the purpose of facilitating future research of face
alignment, we introduce a new facial dataset base on
WIDER Face [5] named Wider Facial Landmarks in the
Wild (WFLW), which contains 10,000 faces with 98 fully
manual annotated landmarks. The multi-view presentation
and location of the proposed 98 points annotation are shown
in Fig. 7. Also, WFLW provides rich property annotations,
including pose, expression, illumination, make-up, occlu-
sion and blur for comprehensive analysis of existing algo-
rithms. As shown in Fig. 8, faces in the proposed dataset
are all collected under unconstrained conditions and ex-
tremely challenging due to large variations in expression,
pose and occlusion. We can simply evaluate robustness of
pose, occlusion, and expression on proposed dataset instead
of switching between multiple evaluation protocols in dif-
ferent datasets. The comparison of WFLW with the most
widely used in-the-wild benchmark is shown in Table 2.
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Evaluation Training # of Training Testing # of Testing Point Normalising
Name Set Samples Set Samples Factor

300W Fullset 300W train-set 3,148 300W full-set 689 68 inter-ocular/pupil distance
300W Testset 300W train-set 3,148 300W test-set 600 68 inter-ocular distance

COFW-68 300W train-set 3,148 COFW test-set 507 68 inter-ocular distance
COFW-29 COFW train-set 1,345 COFW test-set 507 29 inter-ocular distance
AFLW-Full AFLW train-set 20,000 AFLW test-set 4,386 19 face size

AFLW-Frontal AFLW train-set 20,000 AFLW frontal-set 1,314 19 face size
WFLW WFLW train-set 7,500 WFLW test-set 2,500 98 inter-ocular distance

Table 1: Experiments Setting

Dataset # Training # Testing # Landmarks Pose Expression Illumination Make-Up Occlusion Blur
AFLW [3] 20,000 4,386 21 - - - - - -
300W [4] 3,148 1,289 68 - - - - - -
COFW [1] 1,345 507 29 - - - - ! -

WFLW 7,500 2,500 98 ! ! ! ! ! !

Table 2: Comparison of the most widely used face alignment datasets.
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Figure 2: Feature maps with size 64 × 64 and 32 × 32 sampled randomly in the same layers of baseline res-18 and our proposed
boundary-aware landmarks regressor. Feature maps are resized to the same size with face image and stcked together with it for illustration.
(Best viewed in color)



Figure 3: Representative examples of boundary heatmap estimation and landmark localisation results on COFW-68 Testset. (Best viewed
in color)

Figure 4: Representative examples of boundary heatmap estimation and landmark localisation results on 300W Challenging Set. (Best
viewed in color)



Figure 5: Representative examples of landmark localisation results on COFW-29 Testset (29 landmarks).

Figure 6: Representative examples of landmark localisation results on AFLW-Full Testset (19 landmarks).
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Figure 7: An illustration of the proposed 98 landmark annotations of WFLW Dataset in multi-view.
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Figure 8: Representative examples of landmark annotations on 6 Testsets of WFLW Dataset.


