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1. Introduction
This supplementary file presents: (1) the pseudo codes

of the whole training process of our approach; (2) ad-
ditional experimental analysis and quantitative results on
TID2013, TID2008, and CSIQ datasets; (3) more qualita-
tive evaluations of the effectiveness of our key components.

2. Training Strategy
Algorithm 1 demonstrates the whole training process of

our approach as the pseudo codes. We list again the core
formulas that introduced in the main paper for convenience.

The loss function of the iqa-discriminator D is formu-
lated as

max
ω

E[logDω(Ir)]+E[log (1− |Dω(Gθ(Id))− dfake|)],
(1)

where

difake =

{
1 if ‖R(Iid, I

i
sh)− si‖F < ε

0 if ‖R(Iid, I
i
sh)− si‖F ≥ ε

. (2)

The adversarial loss of the quality-aware generative net-
work G is formulated as

Ladv = E[log(1−Dω(Gθ(Id)))], (3)

and the overall loss function of G is given by

LG = µ1Lp + µ2Ls + µ3Ladv. (4)

The loss function of the hallucination-guided quality regres-
sion network R is formulated as

LR =
1

T

T∑
t=1

‖R2(f(Hm,n(Id)
t)⊗(R1(Itd, I

t
map)))−st‖`1.

(5)

Algorithm 1 The training process of our method.

Require: Training images: Id, the corresponding ground-
truth references Ir, and quality scores s, initial param-
eters of G netwrok θ̂G, initial parameters of R network
γ̂R, initial parameters of D network ω̂D

1: ForwardG by Ish = G(Id, θ̂G) , and calculate Imap =
|Id − Ish|

2: Forward R by ŝ = R(Id, Imap, s)

3: while θ̂G has not converged do
4: Calculate dfake by Eq.2
5: Forward D by {dreal} = D(Ir), and optimise D

net by Eq.1;
6: Forward D by {dfake} = D(Ish), and optimise D

net by Eq.1;
7: Optimise G net by Eq.3;
8: Forward R by ŝ = R(Id, Imap, s), and optimise R

net by Eq.5;
9: Forward G by Ish = G(Id, θ̂G), and optimise G

net by Eq.4;
10: end while
11: while γ̂R has not converged do
12: Forward R by ŝ = R(Id, Imap, s), and optimise R

net by Eq.5;
13: end while
14: return γ̂R

It should be noted that, during the training process, R in
step 4 and 8 is the same one that optimises in a mutually re-
inforce manner with G. While the regression network Rpre
used in the term Ls of step 9 is an independent one with
fixed weights with no feature fusion from G.

3. Additional Experimental Results

Evaluation Metrics. The detailed definitions of the two
performance metrics (i.e., SROCC, LCC) we use in this pa-



Methods # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 # 11 # 12 # 13
BIECON [3] - - - - - - - - - - - - -
RankIQA [5] 0.652 0.588 0.796 0.326 0.780 0.703 0.776 0.811 0.819 0.894 0.894 0.755 0.798

Baseline 0.384 0.216 0.701 0.086 0.591 0.358 0.587 0.740 0.769 0.565 0.455 0.048 0.305
Ours 0.940 0.920 0.942 0.440 0.960 0.820 0.837 0.781 0.949 0.933 0.602 0.318 0.704

Ours+Oracle 0.959 0.939 0.972 0.764 0.957 0.743 0.879 0.848 0.931 0.971 0.696 0.582 0.750
Methods # 14 # 15 # 16 # 17 # 18 # 19 # 20 # 21 # 22 # 23 # 24 ALL

BIECON [3] - - - - - - - - - - - 0.765
RankIQA [5] 0.472 0.626 0.260 0.628 0.629 0.593 0.661 0.798 0.782 0.834 0.874 0.799

Baseline 0.035 -0.033 -0.225 -0.121 0.396 0.253 0.211 0.418 0.724 0.328 0.430 0.573
Ours 0.649 0.165 0.353 0.538 0.054 0.890 0.404 0.768 0.892 0.474 0.600 0.880

Ours+Oracle 0.878 0.536 0.824 0.881 0.527 0.911 0.555 0.857 0.881 0.553 0.716 0.939

Table 1: Performance evaluation (LCC) on the entire TID2013 database.

per are as follows:

SROCC = 1−
6
∑T
t=1 dt

T (T 2 − 1)
(6)

where T is the number of distorted images, and dt is the
rank difference between the ground-truth quality score and
predicted score of image t.

LCC =

∑T
t=1(st − s̄t)(ŝt − ¯̂st)√∑

N
t=1(st − s̄t)2

√∑N
t=1(ŝt − ¯̂st)2

(7)

where s̄t and ¯̂st denote the means of the ground truth and
predicted score, respectively.

Evaluation on TID2013. Besides the SROCC results
analysed in the main paper, we also evaluate the LCC re-
sults on the entire TID2013 dataset. The results in Table
1 lead to the following conclusions. Firstly, our approach
achieves 10% and 15% relative improvements over the most
state-of-the-arts RankIQA, and BIECON on ALL score, re-
spectively. We also achieve superior results than RankIQA
on most of individual distortions. It is interesting to observe
that, although RankIQA synthesizes masses of ranked im-
ages according to the distortion types in a specific dataset,
our model outperforms RankIQA on distortion types like
#1 ∼ #8 by significant margins. It may be because, com-
paring with providing plenty of similar samples, compen-
sating perceptual discrepancy information is a more effec-
tive way for deep network to learn desirable feature repre-
sentation. This observation demonstrates the effectiveness
of our model. Secondly, our method performs significantly
better than the baseline on almost all individual distortions.
Simply utilizing deep network will easily lead to over-fitting
problem due to the lack of samples, like the baseline (Res-
18 Network) performs. This observation demonstrates the
generalization ability of our model.

Evaluation on TID2008. We compare SROCC perfor-
mance of our approach with the state-of-the-art methods,
i.e., BRISQUE [6], LBIQ [8], Tang et al. [9], and BIECON
[3]. The results of previous three works are from the paper

Statistics Methods # 1 # 2 # 3 # 4 # 5 # 6

SROCC

BRISQUE [6] 0.660 0.317 0.799 -0.220 0.841 0.830
LBIQ [8] 0.820 0.911 0.881 0.735 0.920 0.835
Tang [9] 0.840 0.936 0.893 0.638 0.851 0.850

BIECON [3] - - - - - -
Ours 0.927 0.898 0.940 0.747 0.967 0.940

Ours+Oracle 0.941 0.916 0.941 0.730 0.981 0.905
Methods # 7 # 8 # 9 # 10 # 11 # 12

BRISQUE [6] 0.690 0.810 0.445 0.821 0.745 0.279
LBIQ[8] 0.812 0.919 0.780 0.911 0.931 0.675
Tang [9] 0.835 0.890 0.910 0.925 0.950 0.831

BIECON [3] - - - - - -
Ours 0.714 0.618 0.917 0.937 0.610 0.628

Ours+Oracle 0.777 0.627 0.950 0.899 0.635 0.557
Methods # 13 # 14 # 15 # 16 # 17 ALL

BRISQUE [6] 0.740 0.130 0.316 0.305 0.091 0.610
LBIQ [8] 0.775 0.150 0.449 0.270 0.581 0.740
Tang [9] 0.750 0.600 0.720 0.425 0.765 0.841

BIECON [3] - - - - - 0.826
Ours 0.381 0.733 0.331 0.275 0.357 0.941

Ours+Oracle 0.460 0.833 0.759 0.686 0.696 0.952

Table 2: Performance evaluation (SROCC) on the entire
TID2008 database.

Statistics Methods # 1 # 2 # 3 # 4 # 5 # 6

LCC

BIECON [3] - - - - - -
Ours 0.920 0.873 0.925 0.836 0.970 0.947

Ours+Oracle 0.918 0.884 0.928 0.822 0.964 0.881
Methods # 7 # 8 # 9 # 10 # 11 # 12

BIECON [3] - - - - - -
Ours 0.727 0.585 0.920 0.974 0.660 0.519

Ours+Oracle 0.750 0.635 0.959 0.970 0.640 0.537
Methods # 13 # 14 # 15 # 16 # 17 ALL

BIECON [3] - - - - - 0.835
Ours 0.407 0.802 0.230 0.267 0.378 0.949

Ours+Oracle 0.353 0.830 0.777 0.679 0.802 0.955

Table 3: Performance evaluation (LCC) on the entire TID2008
database.

[9], and the results of BIECON are re-implemented using
the codes provided in their homepage. As shown in Ta-
ble 2, our method outperforms BRISQUE, LBIQ on most
of individual distortions. Comparing with Tang et al. [9],
our model obtain over 5% improvments on more than half
types, and achieves comparable results for the rest types, ex-
cept distortion types like changing contrast, where the nor-
malization operation in network leads to a certain degree



Type Methods LIVE TID2008 TID2013 CSIQ
SROCC LCC SROCC LCC SROCC LCC SROCC LCC

FR PSNR 0.876 0.872 0.553 0.573 0.636 0.706 0.806 0.800
SSIM [10] 0.948 0.945 0.775 0.773 0.637 0.691 0.913 0.899

VIF [7] 0.963 0.960 0.749 0.808 0.677 0.772 0.920 0.928
FSIMc [13] 0.960 0.961 0.884 0.876 0.851 0.877 0.931 0.919

FR-DCNN [4] 0.975 0.977 - - - - - -
DeepQA [2] 0.981 0.982 0.947 0.951 0.939 0.947 0.961 0.965

NR BIECON [3] 0.960 0.962 0.826 0.835 0.721 0.765 0.825 0.838
RankIQA [5] 0.981 0.982 - - 0.780 0.799 - -

Ours 0.982 0.982 0.941 0.949 0.879 0.880 0.885 0.910

Table 4: SROCC and LCC comparison with FR-IQA(full-reference) methods.
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Figure 1: Performance evaluations (both SROCC and LCC) on
the entire CSIQ database.

invariance to them. For ALL score, our approach achieves
the highest results. Specifically, we obtain 14% improve-
ment than BIECON and 12% improvement than Tang et al.
[9]. We also compare LCC performance of our approach
with BIECON. Our method obtains 14% improvement than
BIECON, as demonstrated in Table 3.

Evaluation on CSIQ. We compare both SROCC and
LCC performances of our approach on CSIQ with the
state-of-the-art methods, i.e., FRIQUEE [1], BRISQUE [6],
CORNIA [11], BIECON [3], and ILNIQE [12]. As shown
in Figure 1, we obtain about 5% relative improvements on
SROCC and LCC. Similar conclusion as analyzing in other
three datasets, our method could compensate effective per-
ceptual discrepancy information unconstrained to specific
definition or image content of a particular dataset, and there-
fore has the merit of robustness to various distortions.

Comparison with FR-IQA methods. In addition, as an
extension of our work, we also compare our NR-IQA ap-
proach with the state-of-the-art FR-IQA methods, as shown
in Table 4. Our approach achieves better results than most
of state-of-the-art FR-IQA models. On LIVE dataset, our
approach performs better than the most state-of-the-art FR-
IQA method DeepQA [2]. As for rest datasets, we obtain
comparable results with DeepQA and FSIMc, which are su-
perior to other NR-IQA methods at this point.

4. Qualitative Evaluations

In this section, we first show the feature responses of
baseline model and our approach to different distorted im-
ages1 to verify the effectiveness of perceptual discrepancy
compensation qualitatively. Then, we present representative
examples of hallucinated reference generation to demon-
strate the effectiveness of our key components.

Figure 2 shows two examples of different feature re-
sponse results of typical NR-IQA regression network and
our approach. To illustrate the effectiveness of perceptual
discrepancy compensation mechanism, we use baseline net-
work (Res-18 Network with only distorted images as input)
to represent typical NR-IQA network. We randomly sample
eight feature maps from second residual block on the two
networks respectively, and visualize the feature responses,
where brighter values indicate higher responses. First ex-
ample is an image under local block-wise distortions, and
the second one is distorted by jpeg transmission errors. As
shown in the Figure 2, the feature responses of baseline net-
work tend to be rambling in both two examples. In contrast,
the feature maps of the hallucination-guided regression net-
work response strongly on distorted parts. This observation
qualitatively demonstrates the perceptual discrepancy com-
pensation mechanism could provide more specific and ef-
fective information to a deep network to learn desirable im-
age quality feature representations comparing with typical
NR-IQA regression network.

Figure 3 shows the qualitative comparison of the base-
line generator, generator with quality-aware loss, and our
final generatorG (i.e.,“IQA-GAN ”,which contains quality-
aware loss and iqa-discriminator) on common distortion
types, such as additive gaussian noise, spatially correlated
noise, masked noise, gaussian blur etc. Figure 4 shows
the qualitative comparison on typical distortion types, such
as jpeg transmission errors, local block-wise distortions,
jpeg2k compression etc. As can be seen from the two fig-
ures, with the quality-aware loss and IQA-GAN scheme

1The distorted images in the qualitative evaluations are chosen from
TID2008 dataset.



Feature Response of Hallucination‐Guided Regression Network

Feature Response of  Baseline Network

Feature Response of Hallucination‐Guided Regression Network
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Figure 2: Examples of feature response comparison of typical NR-IQA regression network with our Hallucination-Guided Regression
Network for verifying the effectiveness of our hallucinated reference information compensation mechanism. (Best viewed in color)

adding, the hallucinated images are improved to be more
and more clear and plausible, and G performs well robust-
ness to various distortions. This leads to highly effective
discrepancy maps that can further benefit the final quality
prediction with precise distortion information (e.g., loca-
tion, form) captured.
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Distorted Image Baseline Generator Baseline + Quality-
Aware Loss

Baseline + Quality-
Aware Loss + IQA-GAN

Discrepancy Map

Figure 3: Additional qualitative comparison of hallucinated reference generation for verifying the effectiveness of key components of G
on common distortion types. (Best viewed in color)



Distorted Image Baseline Generator Baseline + Quality-
Aware Loss

Baseline + Quality-
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Figure 4: Additional qualitative comparison of hallucinated reference generation for verifying the effectiveness of key components of G
on typical distortion types. (Best viewed in color)


