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Abstract

In this supplementary material, we provide a detailed mathematical derivation to the optimization proposed in [5]. Addi-
tionally, we provide additional qualitative results, insights and briefly discussed some practical issues.

1. Detailed Mathematical Derivation
The cost function from Section 4.

minimize
Ss,S

]
t ,Cs,Ct,Js,Jt

E =
1

2
‖Ws −RSs‖2F +

β

2
‖S]t − T1(Ss)‖2F+ < Y1, S

]
t − T1(Ss) > +γ‖S]t‖∗ + λ1‖Ts − TsCs‖2F + λ3‖Js‖∗+

β

2
‖Cs − Js‖2F+ < Y2, Cs − Js > +λ2‖Tt − TtCt‖2F + λ4‖Jt‖∗ +

β

2
‖Ct − Jt‖2F+ < Y3, Ct − Jt >,

subject to:

Ψs = ξ(Cs ,Ss , σε); Ψt = ξ(Ct ,S
]
t , σε);

Ss = ζ(Ψs,Σs, Vs, Ns);S
]
t = ζ(Ψt,Σ

]
t, Vt, Nt);

Ws = T2(Ws, Ss).
(1)

1.1. Background

To make the optimization simpler, let’s consider an error term that involves the tensor structure

‖Es‖2F = ‖Ts − TsCs‖2F . (2)

Considering the ith term, and using ‖Esi‖2F = trace(ETsiEsi)
From our notation definition Ts =

{
(Ψs1 )(Ψs1 )T , (Ψs2 )(Ψs2 )T ..., (ΨsKs

)(ΨsKs
)T
}

and Cs ∈ RKs×Ks

‖Esi‖2F = trace
[(

(ΨsiΨ
T
si )−

Ks∑
j=1

cij(ΨsjΨ
T
sj )
)T(

(ΨsiΨ
T
si )−

Ks∑
j=1

cij(ΨsjΨ
T
sj )
)]

‖Esi‖2F = trace
(
(ΨsiΨ

T
si )T (ΨsiΨ

T
si )
)
− 2

Ks∑
j=1

cijtrace
(
(ΨsiΨ

T
si )T (ΨsjΨ

T
sj )
)

+

Ks∑
l=1

Ks∑
m=1

cilcimtrace
(
(ΨslΨ

T
sl )T (ΨsmΨT

sm)
)
.

(3)
Now using the trace cyclic property and the orthonormality property of matrices.
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‖Esi‖2F = trace(Id)− 2

Ks∑
j=1

cijtrace
(
(ΨT

sj Ψsi)(Ψ
T
si Ψsj )

)
+

Ks∑
l=1

Ks∑
m=1

cilcimtrace
(
(ΨT

sl Ψsm)(ΨT
smΨsl)

)
.

‖Esi‖2F = d− 2

Ks∑
j=1

cijΩ
s
ij +

Ks∑
l=1

Ks∑
m=1

cilcimΩslm,where, Ωsij = trace
(
(ΨT

sj Ψsi)(Ψ
T
si Ψsj )

)
.

(4)

Here, d stands for the dimension. Notice Ωsij has a dimension of d×d which is easy to handle than the total number of points
in a dense datasets. Also, it’s simple to verify that Ωsij is symmetric.

Using Equation (4) and Ωs = (Ωsij)
Ks
i,j=1 ∈ RKs×Ks , we can rewrite Equation (2) as follows

‖Es‖2F = const− 2trace(CsΩs) + trace(CsΩsC
T
s )

⇒ ‖Es‖2F = const− 2trace(CsLsL
T
s ) + trace((CsLs)(CsLs)

T ), where LsLTs = Cholesky(Ωs)

⇒ ‖Es‖2F = const+ ‖Ls − CsLs‖2F {∵ constant w.r.t Cs will not affect the minimization}
(5)

Similarly, other tensor structure can be equivalently represented in the temporal domain.

1.1.1 Overall Optimization

Substituting the above derivation in Equation (1) gives us a simpler representation

minimize
Ss,S

]
t ,Cs,Ct,Js,Jt

E =
1

2
‖Ws −RSs‖2F +

β

2
‖S]t − T1(Ss)‖2F+ < Y1, S

]
t − T1(Ss) > +γ‖S]t‖∗ + λ1‖Ls − LsCs‖2F + λ3‖Js‖∗+

β

2
‖Cs − Js‖2F+ < Y2, Cs − Js > +λ2‖Lt − LtCt‖2F + λ4‖Jt‖∗ +

β

2
‖Ct − Jt‖2F+ < Y3, Ct − Jt >

subject to:

Ψs = ξ(Cs ,Ss , σε); Ψt = ξ(Ct ,S
]
t , σε);

Ss = ζ(Ψs,Σs, Vs, Ns);S
]
t = ζ(Ψt,Σ

]
t, Vt, Nt);

Ws = T2(Ws, Ss);
(6)

Solution to Ss

≡ argmin
Ss

1

2
‖Ws −RSs‖2F +

β

2
‖S]t − T1(Ss)‖2F+ < Y1, S

]
t − T1(Ss) >

≡ argmin
Ss

1

2
‖Ws −RSs‖2F +

β

2
‖T −1

1 (S]t )− Ss‖
2
F+ < T −1

1 (Y1),T −1
1 (S]t )− Ss >

≡ argmin
Ss

1

2
‖Ws −RSs‖2F +

β

2
‖Ss −

(
T −1

1 (S]t ) +
T −1

1 (Y1)

β

)
‖2F .

(7)

The solution to Ss can be derived by differentiating the above term w.r.t Ss and equating it to zero.

Ss ≡
(
β
(
T −1

1 (S]t ) +
T −1

1 (Y1)

β

)
+RTWs

)/
(RTR+ βI)

you may use mldivide() to solve this equation in MATLAB.
Solution to S]t

≡ argmin
S
]
t

γ‖S]t‖∗ +
β

2
‖S]t − T1(Ss)‖2F+ < Y1, S

]
t − T1(Ss) >

≡ argmin
S
]
t

γ‖S]t‖∗ +
β

2
‖S]t −

(
T1(Ss)−

Y1

β

)
‖2F

(8)

Let’s define the soft-thresholding operation as Sτ [x] = sign(x) max(|x| − τ, 0)
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Then, the optimal solution to S]t is given by

S]t ≡ UtS γβ (Σt)Vt,

where, [Ut,Σt, Vt] = svd(T1(Ss)−
Y1

β
)

(9)

Solution to Cs
≡ argmin

Cs

λ1‖Ls − LsCs‖2F +
β

2
‖Cs − Js‖2F+ < Y2, Cs − Js >

≡ argmin
Cs

λ1‖Ls − LsCs‖2F +
β

2
‖Cs −

(
Js −

Y2

β

)
‖2F

(10)

The solution to Cs can be derived by differentiating the above term w.r.t Cs and equating it to zero.

Cs ≡
(

2λ1LsL
T
s + β(Js −

Y2

β
)
)(

2λ1LsL
T
s + βIs

)−1

Solution to Ct

Similar to the Cs solution derivation, it’s solution can be derived as follows:

≡ argmin
Ct

λ2‖Lt − LtCt‖2F +
β

2
‖Ct − Jt‖2F+ < Y3, Ct − Jt >

≡ argmin
Ct

λ2‖Lt − LtCt‖2F +
β

2
‖Ct −

(
Jt −

Y3

β

)
‖2F

(11)

Ct ≡
(

2λ2LtL
T
t + β(Jt −

Y3

β
)
)(

2λ2LtL
T
t + βIt

)−1

Solution to Js
≡ argmin

Js

λ3‖Js‖∗ +
β

2
‖Cs − Js‖2F+ < Y2, Cs − Js >

≡ argmin
Js

λ3‖Js‖∗ +
β

2
‖Js −

(
Cs +

Y2

β

)
‖2F

(12)

Similar to Equation 9 derivation, using the soft-thresholding operation, its optimal solution can be obtained as

Js ≡ UJsSλ3
β

(ΣJs)VJs , where [UJs ,ΣJs , VJs ] = svd(Cs +
Y2

β
) (13)

Solution to Jt
≡ argmin

Jt

λ4‖Jt‖∗ +
β

2
‖Ct − Jt‖2F+ < Y3, Ct − Jt >

≡ argmin
Jt

λ4‖Jt‖∗ +
β

2
‖Jt −

(
Ct +

Y3

β

)
‖2F

(14)

Jt ≡ UJtSλ4
β

(ΣJt)VJt , where [UJt ,ΣJt , VJt ] = svd(Ct +
Y3

β
) (15)

1.2. Proof

We have stated in the Algorithm table that Ωs � 0 The following lemma provides the proof for the same.

Lemma 1.1. Given a set of orthonormal matrices Ψs =
{
{Ψsi}Ksi=1 : ∀Ψsi ∈ Rd×n, Ψsi

TΨsi = I
}

, if ∃ Ωsij =

trace[
(
ΨT

sj Ψsi

)(
ΨT

si Ψsj

)
] such that Ωs = (Ωsij)

Ks
i,j=1 ∈ RKs×Ks , then Ωs � 0.

Proof. Zi = ΨsiΨ
T
si is a d× d symmetric matrix.

As per the statement, Ωsij = trace[
(
ΨT

sj Ψsi

)(
ΨT

si Ψsj

)
] = trace[

(
Ψsj Ψ

T
sj

)(
ΨsiΨ

T
sj

)
]

= trace(ZjZi) = trace(ZjZ
T
i ) = trace(ZTi Zj)

Ωs = (Ωsij)
Ks
i,j=1, then, Ωs = ZTZ {Skipping some elementary steps}

⇒ Ωs � 0.
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Figure 1: (a) Grouping of the trajectories based on Cs matrix. We provide four different views to check the fidelity of our result and
assumption. (b) Grouping of the shapes based on Ct matrix. Color corresponding to the group block is shown with the color bars (extreme
right). This simulation is done on the real face sequence [4] with Ks and Kt = 10.

Similarly, the positive semi-definite proof for Ωt can be derived. Note: In case Ωs = 0||Ωt = 0 while implementing
this algorithm, then add δ (a very small positive number) to the diagonal elements of Ωs or Ωt accordingly, to get to an
approximate Cholesky factorization. Mathematically, approximate Ωs = 0||Ωt = 0 as Ω ≈ Ω + δI to make it numerically
positive definite.

2. Qualitative Results
2.1. Analysis of Cs and Ct

In the experiment section we mentioned about the observation of Cs and Ct matrix. Since, no ground-truth data’s are
available to quantify these matrices, we provide a visual observation for the same. We used the spectral clustering [10] to
group the trajectories and shapes after convergence to infer the output of Cs and Ct matrix. Figure 1 shows the output of
this experiment. Visually it can be observed that local low-rank linear subspace are properly procured —both spatially and
temporally.

3. Rotation Estimate
We used the method proposed by Dai et al. [3] to estimate rotation which only depends on theK value (model complexity)

and therefore, it can efficiently handle dense feature correspondence over multiple frame to estimate rotation. Assuming that
a single non-rigid deforming object constitutes a global relative camera pose over frames is a reasonable choice and works
efficiently. Most of the past approaches also used this assumption to solve rotation [3, 2, 1, 6, 7]. Quantitative results on
several datasets also shows that high-quality reconstruction can be obtained under such assumption. Additionally, it has also
been observed that different camera path can lead to different reconstruction results. Consequently, we plan to investigate it
in our future work.

Note: For technical details on the compactness of grassmannians, kindly refer to [9] for comprehensive theory. Never-
theless, there are many other books and notes on differential manifolds which provides information on the compactness of
grassmannians.

4. Convergence Curve
Figure 2 shows the empirical convergence of our algorithm implementation. In practice, we find that our algorithm

converges in 100-150 iterations on almost all the datasets, we tested so far. The theoretical convergence proof is left as a
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Figure 2: Empirical convergence curve of our algorithm using ADMM.

future work.

5. Practical Challenges for dense NRSfM systems
From a practical view point, estimating robust dense feature correspondences of a deforming surface/object across frames

in itself is a very challenging problem to solve. Such challenges comes from the fact that illumination of the deforming object
keeps changing over time. As a result, color based weighting term to regularize neighboring terms (like depth continuity,
flow continuity, motion continuity etc.) in optical flow and 3D reconstruction algorithm’s [8] may lead to wrong solution.
Nonetheless, for our method we assume that a fairly good dense feature correspondences over images are provided as in-
put. At last we would like to state that while developing dense NRSfM system using our or any other similar approaches
aforementioned challenges needs to be addressed first.
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