# A. Appendices

### A.1. Bounding Box Generation

Given a vertex  $V_m$  in a cluster  $\Psi$ , we compute their coordinates in the input image  $\omega_m=(i_m,j_m)\cdot\mu_{stride}+\mu_{offset}$ , where  $\mu_{stride}=16$  and  $\mu_{offset}=8$ . Then the bounding box size and orientation of each cluster are computed based on Principle Component Analysis (PCA). Given a set of coordinates  $\omega=\{\omega_m|m=1,2,\cdots\}$  of a cluster , we compute the its eigenvectors  $\theta_1$  and  $\theta_2$  as well as the corresponding eigenvalues  $\lambda_1$  and  $\lambda_2$ . The coordinates of the four corners of the bounding box is computed by:

$$c_{1} = A(\lambda_{1} \cdot \theta_{1} + \lambda_{2} \cdot \theta_{2}) + \phi$$

$$c_{2} = A(\lambda_{1} \cdot \theta_{1} - \lambda_{2} \cdot \theta_{2}) + \phi$$

$$c_{3} = A(-\lambda_{1} \cdot \theta_{1} - \lambda_{2} \cdot \theta_{2}) + \phi$$

$$c_{4} = A(-\lambda_{1} \cdot \theta_{1} + \lambda_{2} \cdot \theta_{2}) + \phi$$

$$(14)$$

where  $\phi$  is the center of the cluster and A denotes the scaling factor which is set to 1.75.

## A.2. From Image to Stochastic Flow

Crucially, accurate object detection relies on correct flow prediction. In MCN, the flows  $f_0$ ,  $f_1$ ,  $f_2$  and  $f_3$  are the outputs of the Flow Mapping Layer (FML) with regional object probability P and correlation measurement  $S_1$ ,  $S_2$  and  $S_3$  as inputs. P is generated by the Fore-/Background Network (FBN), while  $S_1$ ,  $S_2$  and  $S_3$  are output by Local Correlation Network (LCN). Both FBN and LCN are starting at the  $conv5\_3$  of VGG-16 pretrained network.

#### A.2.1 Fore-/Background Network

As shown in Figure 8 (a), the Fore-Background Network is an FPN-based network [14] with spatial recurrent components and softmax output to predict the object score  $P \in (0,1)^{H_{1/16} \times W_{1/16}}$ . The output of conv5\_3 is further processed by a Feature Pyramid Network (FPN) and a 2dimensional Recurrent Neural Network (2D-RNN) successively. In FPN shown in Figure 8 (b), input with size of  $H/16 \times W/16$  is processed by four convolutional blocks with  $2 \times 2$  pooling layers to obtain additional feature maps with resolution of 1/32, 1/64, 1/128 and 1/256. These feature maps together with the input are fused to resolution of 1/16 by deconvolution consisted of layer-wise addition, bilinear upsampling and convolution. By fusing features with different resolution in a pyramid manner, our method have larger capacity to detect multiscale objects with less parameters. Subsequently, the output of FPN is fed to an 2D Recurrent Neural Network (2D-RNN) before region-based classification. We consider a spatial feature map as a 2D sequence which can be directly analyzed by a 2D-RNN. The structure of the proposed 2D-RNN is shown in Figure 8 (c).

A 2D-RNN is composed of two Bidirectional RNNs (RNN-H and RNN-V), which are applied to the rows and columns of the input feature map independently. As shown in Figure 8, the outputs of 2D-RNN is constructed by concatenating two feature maps produced by RNN-H and RNN-V with size of  $H_{1/16} \times W_{1/16}$  along depth axis. Finally, a region-based classification is performed on the output feature map by a 2-layer convolutional network with *softmax* output, Figure 9 (d).

#### A.2.2 Local Correlation Subnetwork

To predict the semantic and spatial correlation between adjacent subregions, we build another subnetwork with additional four convolutional blocks and a *softmax* classifier starting at  $conv5\_3$ , shown in Figure 9. The network outputs three correlation measurements  $S_1$ ,  $S_2$  and  $S_3 \in (0,1)^{H_{1/16} \times W_{1/16}}$  representing the semantic and spatial correlation between current anchor and its three neighbors (bottom, right and left) respectively. As the  $conv5\_3$  features is corresponding to subregions of input image with stride of 16, the LCN is actually measuring the correlation among these overlapping subregions. Together with output of objetness network P,  $S_1$ ,  $S_2$  and  $S_3$  are mapped to the Stochastic Flow  $f_0$ ,  $f_1$ ,  $f_2$  and  $f_3$  by Flow Mapping Layer (FML).

## A.2.3 Flow Mapping Layer

The Flow Mapping Layer (FML) is point-wise non-linear function with input of P,  $S_1$ ,  $S_2$  and  $S_3$  and output of  $f_0$ ,  $f_1$ ,  $f_2$  and  $f_3$ . The mapping is shown below:

$$f_0 = e^{-\alpha[1-\mu(1-P)]\cdot[S_1^2 + S_2^2 + S_3^2]}$$
 (15)

$$f_1 = (1 - f_0) \cdot \frac{S_1}{S_1 + S_2 + S_3} \tag{16}$$

$$f_2 = (1 - f_0) \cdot \frac{S_2}{S_1 + S_2 + S_3} \tag{17}$$

$$f_3 = (1 - f_0) \cdot \frac{S_3}{S_1 + S_2 + S_3} \tag{18}$$

$$\mu(x) = \frac{1}{1 + e^{-\beta(x - \gamma)}}.$$
 (19)

Here,  $f_0$  is actually the transition probability of *self-loop*, which is controlled by the likehood of background (1-P) and the correlation measurement between current vertex and its neighbors  $(S_1, S_2 \text{ and } S_3)$ . It is designed to be weak for vertices within the same object region and to be strong for a vertex which corresponds to the background or is just the attractor of a cluster. This behavior is realized by firstly measuring the correlation intensity  $(S_1^2 + S_2^2 + S_3^2)$  modulated by an *on-off* function  $\mu(x)$ , and then projecting it to the exponential space.  $\mu(x)$  is parameterized by trainable

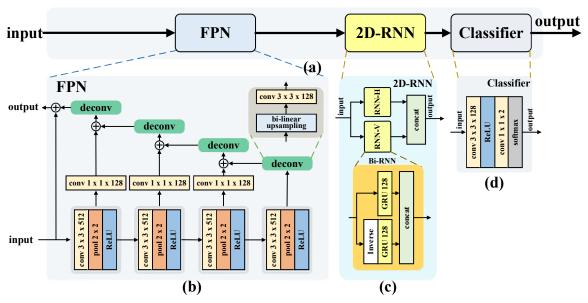


Figure 8. (a) Architecture of Fore-/Background Network (FBN); (b) Feature Pyramid Network (FPN) fusing feature maps with different resolutions; (c) 2-dimensional Recurrent Neural Network (2D-RNN) encoding contextual representations; (d) Regional objectness classifier predicting presence of an object with stride of  $16 \times 16$  pixels.

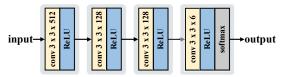


Figure 9. Local Correlation Network (LCN) with four convolution blocks and a softmax layer outputs correlation measurements  $S_1$ ,  $S_2$  and  $S_3$  between current anchor and its three neighbors (bottom, right and left).

variables  $\alpha$ ,  $\beta$  and  $\gamma$ . It takes 1 - P as input and produces

an on-off signal to control  $f_0$ . It will disables the effect of  $S_1$ ,  $S_2$  and  $S_3$  and drive  $f_0$  approaching to 1 when a vertex is in the background region. Accordingly, the values of  $f_1$ ,  $f_2$  and  $f_3$  will be small, making all the background vertices to be isolated. In the object region, the correlation intensity  $S_1$ ,  $S_2$  and  $S_3$  take control of  $f_0$  since 1-P is small. In this case,  $f_0$  will be large if weak correlation is measured and the vertex will become the attractor of a cluster. Otherwise, the vectices belongs to the same object region will be connected through  $f_1$ ,  $f_2$  and  $f_3$  and the flows of a cluster will end at the attractor.