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1. Wireframe Construction Algorithm Detail
Given an image, our wireframe construction algorithm

takes a set of junctions {pi}Ni=1, pi =
(
xi, {θik}Ki

k=1

)
, and

a line heat map h as input. Note that for the junctions and
their branches predicted by our network, we only keep those
with confidence scores higher than certain thresholds τc and
τb, respectively. As a pre-processing step, we further adopt
a strategy similar to non-maximum suppression to remove
duplicate detections.

Our wireframe construction algorithm is presented in
Alg. 1. In the algorithm, we first apply a threshold ω to con-
vert the line heat map h(p) into a binary map M (line 2).
Note that this threshold ω is varied to obtain the precision-
recall curve in our experiments on wireframe construction.
The algorithm then proceeds as follows:

First, we connect all pairs of junctions which are
aligned with each other’s branch directions (lines 3-
22). Let rik represent the ray starting at pi along its
k-th branch. We collect all possible rays as R =
{r11, ..., r1K1

, ..., ri1, ..., riKi
, ...}, and use (i, k) = π(t)

to map the t-th ray in R to its junction index i and branch
index k. Then, for the rays in R, we use V ∈ RNr×Nr ,
Nr = |R|, to record the indices of the corresponding
ray/branch of the closest opposite junction. Specifically,
∀t1 ∈ {1, . . . , Nr}, we set V(t1, t2) to 1 if and only if (i)
pi is the on the ray rjk2

and pj is on the ray rik1
, where

(i, k1) = π(t1), (j, k2) = π(t2), and (ii) the distance be-
tween pi and pj is the shortest among all such aligned pairs
(lines 5-15). Then, we consider two rays are matched if
V(t1, t2) = V(t2, t1) = 1 and add the corresponding junc-
tions and line segments to P and L, respectively (lines 17-
21).

Second, for any ray rik which fails to find a matching ray
using the above procedure, we attempt to recover additional
line segments using the line supportM (lines 23-38). We
consider the following cases:

(a) If the distance between pi and qb, the intersection of
rik and the image boundary, is smaller than certain

threshold (say 0.05 ×m where m is the maximum of
image width and height), we add {pi, qb} and the con-
necting line segment to P and L, respectively (lines
24-26).

(b) For a ray exceeding the length threshold in (a), we first
find the farthest line pixel qM along the ray on M.
Then, we find all the intersection points {q1, . . . , qS}
of line segment (pi, qM) with existing segments in
L (lines 28-29). Let q0 = pi and qS+1 = qM,
we calculate the line support ratio κ(qs−1, qs), s =
{1, . . . , S, S + 1}, for each segment. Here, κ is de-
fined as the ratio of line pixels (pixel p is a line pixel
ifM(p) = 1) to the total length of the segment. If κ
is above a threshold, say 0.6, we add the segment to L
and its endpoints to P (lines 30-36).

2. Additional Experiments
2.1. Experiment on Junction Detection Network Pa-

rameters

In this section, we examine the choices of two important
hyper-parameters in our junction detection network.

Effect of balancing positive and negative samples. In
this experiment, we vary the value rmax, which controls
the maximum ratio between negative and positive samples
at each iteration. Note that setting rmax = ∞ is equiva-
lent to using all grid cells during training. We can observe
in Figure 1(a) that the precision-recall curves largely over-
lap. But as rmax increases, the curve shifts toward the high-
precision-low-recall regime, and vice versa. For example,
when rmax = 1, the precision and recall at τ = 0.5 are 0.19
and 0.94, respectively. And when rmax =∞, the precision
and recall at τ = 0.5 are 0.70 and 0.44, respectively. Note
that this has an important implication in practice, as human
annotators tend to miss true junctions much more often than
labelling wrong junctions. Empirically, we have found that
rmax = 7 yields more satisfactory results.
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Algorithm 1 Wireframe Construction

Input: Junctions {pi}Ni=1, pi =
(
xi, {θik}Ki

k=1

)
, and a line

heat map h(p)
Output: Wireframe W consisting of a set of junction

points P connected by a set of line segments L
1: Initialize P ← Ø, L← Ø,V ← 0
2: Binarize h(p) with threshold ω intoM
3: for t1 ∈ {1, 2, . . . , Nr} do
4: (i, k1)← π(t1), dmin ←∞, z ← 0
5: for t2 ∈ {1, 2, . . . , Nr} do
6: (j, k2)← π(t2)
7: if j 6= i and pj on rik1 and pi on rjk2 then
8: if ‖xi − xj‖ < dmin then
9: dmin ← ‖xi − xj‖, z ← t2

10: end if
11: end if
12: end for
13: if z 6= 0 then
14: V(t1, z)← 1
15: end if
16: end for
17: for all t1, t2 ∈ {1, 2, . . . , Nr}, t1 6= t2 do
18: if V(t1, t2) = 1 and V(t2, t1) = 1 then
19: (i, k1)← π(t1), (j, k2)← π(t2)
20: P ← P

⋃
{pi,pj}, L← L

⋃
{(pi,pj)}

21: end if
22: end for
23: for all rik not matched to another ray do
24: Find the intersection of rik and image boundary qb

25: if ‖xi − qb‖ ≤ 0.05×m then
26: P ← P

⋃
{pi, qb}, L← L

⋃
{(pi, qb)}

27: else
28: Find the farthest point qM along rik onM
29: Find all intersections {q1, . . . , qS} of (pi, qM)

with segments in L
30: q0 ← pi, qS+1 ← qM
31: for s ∈ {1, 2, ..., S, S + 1} do
32: if κ(qs−1, qs) > 0.6 then
33: P ← P

⋃
{qs−1, qs}

34: L← L
⋃
{(qs−1, qs)}

35: end if
36: end for
37: end if
38: end for

Going deeper. It is also interesting to investigate how
the network depth of the encoder affects the performance.
In this experiment, we compared two different choices
based on Google Inception-v2, namely the first layer to
“Mixed 3b”, and the first layer to “Mixed 4b”. Note that
the latter has a larger depth and receptive field, at the cost
of spatial resolution (30×30). As one can see in Figure 1(b),
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(b) Network depth
Figure 1. Experiment on junction detection network parameters.

increasing the depth (i.e., predicting at the “coarser” level)
results in higher precision but lower recall. This sug-
gests possibilities to further improve the performance of our
method using a “skip-net” architecture, that is, combining
predictions at multiple levels. We leave this for future work.

2.2. Experiment on Line Segment Detection

In this experiment, we study the possibility of extract-
ing line segments directly from the pixel-wise line heat map
predicted by our network (i.e., without using junctions). To
this end, we simply perform a probabilistic hough trans-
form [1] on the line heat map to generate line segments.
We compare the results with LSD, MCMLSD, and our full
wireframe construction method.

Figure 2 shows the precision-recall curves of all meth-
ods. We make the following observations on the results:
First, the performance of our “Heatmap + Hough” ap-
proach is comparable to that of the state-of-the-art line seg-
ment detection method MCMLSD, verifying the effective-
ness of the our line detection network. Second, by com-
bining the predicted junctions with the line heat map, our
full wireframe construction method performs significantly
better than using the line heat map alone. This further il-
lustrates the importance of junction detection in parsing the
wireframe: By detecting the “endpoints” of the line seg-
ments, we effectively overcome the difficulties faced by tra-
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(a) Our test dataset
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(b) York Urban dataset
Figure 2. Experiment on line segment detection.

ditional line segment detection methods, including the false
detection problem and the inaccurate endpoint problem.

2.3. Additional Results on Junction Detection

In Figure 4, we show additional junction detection re-
sults obtained by all methods. One can see that our method
is able to detect most junctions and their branches in the im-
age, achieving superior performance over existing methods.

From Figure 4 we can also observe some limitations of
our method. Specifically, there are occasionally repeated
detections in our result. This may be caused by junctions
located at the boundary of two adjacent grid cells used in
our junction detection network. Similarly, the use of grid
could also lead to missed detection if two junctions are very
close to each other. But we note that such cases are rather
uncommon in practice and have very small effect on the
overall scene structure estimation.

2.4. Additional Results on Wireframe Construction

In Figure 5, we show additional wireframe detection re-
sults obtained by all methods. Our method outperforms
other two in most areas and produces much cleaner results
as we focus on long line segments and exploit their relations
(junctions). Therefore, the resulted wireframes are poten-
tially more suitable for 3D reconstruction tasks.

In Figure 3, we further show some failure cases of our

Figure 3. Failure cases on our test dataset. First row: Our method.
Second row: Ground truth.

method. One challenging case corresponds to structures
with relatively small scale and weak image gradients (e.g.,
the stairs in the first image). Also, our method sometimes
has difficulty in image region of repetitive patterns (e.g.,
the handrails in the second image and the brick wall in the
third image), generating fragment, incomplete results. This
suggests opportunities for further improvement by explic-
itly harnessing such geometric structure in our wireframe
construction.
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Figure 4. Junction detection results. First row: MJ (dmax = 20). Second row: ACJ (ε = 1). Third row: Our method (τ = 0.5).

4



Figure 5. Line/wireframe detection results. First row: LSD (-log(NFA) > 0.01× 1.758). Second row: MCMLSD (confidence top 100).
Third row: Our method (line heat map h(p) > 10). Fourth row: Ground truth.
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