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1. Tracy-Singh product and Khatri-Rao pro-
duct

Given two matrices A € R™*"™ and B € RP*4, Let us
partition A into blocks A;; € R™:*", and B into blocks
By, € RPr*% The Tracy-Singh product of A and B [4] is
defined as

A®B=(4; ®B)y; = ((Aij @ Bri)ri)ij, (1)

where the notion (-);; follows the convention of referring
to the (7, 7)-th block of a partitioned matrix. The matrix
A ® B is of the dimension (mp) X (nq), and its rank shares
the same property as the Kronecker product of matrices as

rank(A ® B) = rank(A) rank(B). )

If A and B are partitioned identically, then the Khatri-Rao
product of the two matrices is defined as

A OB = (4;; ® Bij)ij- 3)

The matrix A ©® B is of the dimension (D ,m;p;) x
(>_,niq;). The connection between the Tracy-Singh prod-
uct and the Khatri-Rao product is given as

AOB=27(A®B)Z,, “4)

where Z; € R(mP)x(3imipi) and Z, € R(M)*(2inidi) gre
two selection matrices, satisfying Z; Z; = Is~.m,p, and
Z;— oy = IZimqr We refer to [2] for concrete construc-
tions of matrices Z; and Z5, and more technical details re-
garding the Khatri-Rao product. It is then trivial to conclude
the following corollary.

Corollary 1. Given two identically partitioned matrices A
and B, the rank of the Tracy-Singh product and the rank of
the Khatri-Rao product of both matrices fulfils the following
inequality

rank(A © B) < rank(A ® B). 5)

Furthermore, it is clear that

rank(Z1) = Y mqp;, (6)

and

rank(Z3) = anql @)

Now, we recall the Frobenius’ rank inequality [3], i.e.,
given three matrices A, B, C' that have compatible dimen-
sions, then

rank(ABC) 4 rank(B) > rank(AB) + rank(BC). (8)

A special case of the Frobenius’ rank inequality is the so-
called Sylvester’s rank inequality, i.e., given two matrices
A € R™*™ and C € R™*P, then the rank of the product of
U and V is bounded by

rank(AC) > rank(A) 4 rank(C) — n. )

Let A € R™*™ B € R™*™2 and C € R™*P, By
combining both the Frobenius’ rank inequality and the
Sylvester’s rank inequality, we have

rank(ABC) > rank(AB) + rank(BC) — rank(B)
> rank(A) + rank(B) — ny — na+
+ rank(B) + rank(C') — rank(B) (10)
= rank(A4) + rank(B) + rank(C)—
— N1 — Na.
If the Tracy-Singh product A ® B has full rank, denoted
by
Ris := rank(A ® B), an

then the rank of the Khatri-Rao product A ® B is bounded
from below by

rank(A © B) >3 mip; + Ris + Y ;g5 —
i j (12)
—mp —ng.



Note, that the above lower bound is not guaranteed to be
positive. Hence, nothing is conclusive about the rank of the
Khatri-Rao product of two arbitrary full rank matrices.

2. Proof of Proposition 2, 3, 5, and 6

Proposition 2. Given a collection of matrices V; €
R™ "L and a collection of vectors ¢; € R™-1, for i =

LT, let O = [Uy,... U] € R gnd & =
[f1,-..,¢7] € R"=1%T Then the rank of the Khatri-Rao
product ¥ © ® is bounded from below by

T
)+ Z rank (¥
i=1

If all matrices V;’s and ® are of full rank, then the rank of
W © ® has the following properties:

rank(¥ © ®) > n; rank(P —Tny. (13)

(1) If n; < ny, then rank(¥ © ®) > n; rank(®);
(2) If ng > ng, andny—1 > T, then rank(¥ © ®) > Tny,
(3) Ifng > np andni—y < T, thenrank(¥ © ®) > np,

Proof. We can trivially rewrite the Kronecker product for
each partition as

\I/Z‘ ® ¢1 = (Im\Ijv) ® (¢11)
- (I’!L[ ® ¢7/)\I/1

Then, the Khatri-Rao product of ¥ and ® can be computed
as the product of two matrices, i.e.,

(14)

VOB=[I,,06¢1,...,I,2¢7] diag(Ty,..., Uy

:5(Inl @q,)eR("L"n—l)X("lT) ::\iGR(an)X("LT)

), (15)

where I,,, ® ® denotes the Tracy-Singh product of the
identity matrix [,,, and T' column-wised partitioned matrix
®, and the operator diag(-) puts a sequence of matrices
into a block diagonal matrix. By the rank property of the
Tracy-Singh product, the rank of matrix I,,, ® ® is equal to
n; rank(®). Further, by the Sylvester’s rank inequality, the
rank of ¥ © ® is bounded from below

T
P)+ Z rank(W
i=1

Specifically, if all matrices ¥;’s and ® are of full rank, we
have the following properties.

rank (P © ®) > n; rank( —Tn;. (16)

(1) If n; < nyg, then the rank of the block diagonal matrix
W is equal to n;7". By the Sylvester’s rank inequality
[3], we have

rank(¥ © ®) > n; rank(®) + T — T

= ny rank(P). 1n

(2) If n; > ny and n;_; > T, then the rank of U is equal
to nz, T, and the rank of (I,,, ® ®) is equal to n;T. By
the Sylvester’s rank inequality, we have

rank(® © ®) > /T +n,T — T

18

= nLT. ( )

(3) If n; > ny and nj—y < T, then the rank of (I,,, ® ®)
is equal to n;n;—1. By the same argument, we have

rank(¥ © ®) > nyny_1 + npT —nT. (19)

It is clear that such a lower bound can be even nega-
tive, i.e., practically useless. However, since matrix &
is of full rank, there must exist a non-zero vector ¢;,
so that rank(¥; ® ¢;) = ny. Then we have the result
rank(¥ © ®) > ny. O

Proposition 3. For an MLP architecture F, the rank of
P (W) as defined in Eq. (22) (in the manuscript) is bounded
from below by

L L—1
rank Z n; rank <I’l 1 — Z Tn,
=1 =1

L T
+ZZrank \Il( 2 — LTng,.
=1 i=1

(20)

Proof. By stacking all row blocks ¥; ©® ®;_; for [ =
1,..., L together, we have P(W) as in Eq. (22) (in the
manuscript). We can rewrite P(W) as

P( ) dlag( 711®¢07"'7I1’LL®@L—1)' (21)
- diag (¥y,..., ) - Ik,
where 1%, = Iy, ..., Irn,]" € RET2XT0L is a ma-

trix of stacking L copies of the identity matrix /7, on top
of each other. Then, by applying Eq. (10), it is straightfor-
ward to get

L L
rank Z n; rank <I’l 1 — Z Tn,
=1 =1
, (22)
+ Z Z rank (\Ill(z)) — LTng,
=1 i=1
+ TnL .
The result follows directly. O]

It is clear that such a bound in Proposition 3 is still very
problem-dependent, and hard to control. Nevertheless, due
to the special structure of I%m, the actual rank bound is
given practically by the largest bound of each individual row
block as characterised in Proposition 2, i.e.,

rank(P(W)) > 1r£lanL rank (\Ill ® @l,l). (23)



Proposition 5. Let an MLP architecture with one hidden
layer satisfy Principle 1, 3, and 4. Then, for a learning
task with T unique training samples, if the following two
conditions are fulfilled:

(1) There are T units in the hidden layer; i.e., n1 =T,

(2) T unique samples produce a basis in the output space
of the hidden layer for all W, € R™0*™,

then a finite exact approximator § is realised at a global
minimum W* € W, i.e., F(W*,.) = g, and the loss func-
tion J is free of suboptimal local minima.

Proof. We feed samples X := [zy,...,z7] € RroxT
through the MLP to generate the outputs in the hidden layer
o, = [p, ... ¢T] € RT*T, which is invertible due
to Condition (2). It can be achieved by employing appro-
priate activation functions as suggested in [!], such as the
Sigmoid and the tanh. Then in the output layer, we have
Dy = | 51)7 e gT)} = W, & € R™*T. Let us de-
note by Y := [g*(x1),...,9%(z7)] € R™*T the desired
outputs. Then, every pair (W7, (Y®,")T) is a global mini-
mum of the total loss function.

We then compute the critical point conditions in the out-
put layer as

1
Ve(6s")
L,® 6 ... Im@qs(ﬂ C =0 @
T
=Py eR(Tn2) x (Tnz) Vi( é ))

where P, is a square matrix. By following case (1) in
Proposition 2, we get rank(P,) = T'ny. The result sim-
ply follows. O

Note, that in Proposition 5, we do not consider the
dummy units introduced by the scalar-valued bias b; ;.. Nev-
ertheless, using similar arguments, the statements in Propo-
sition 5 also hold true for the case with free variables b; .

The following result is simply a special case of Proposi-
tion 3 to a two-layer MLP.

Proposition 6. Let a two-layer MLP architecture
F(ng,n1,n2) with dummy units and na < ny < T
satisfy Principle 1, 3, and 4, and 1 = [1,...,1]T € RT.
For a learning task with T unique samples X € R™*T,
we have

(1) ifrank([X T
rank (P(W)) >

(2) ifrank([X "
rank( (W) ax{nlng,nl(n0+n27T+1)}. (26)

,1]) = no, then
T)}; (25)

max {ninz, n1(ng + ny —

, 1)) = ng + 1, then

Proof. 1t is straightforward to have

rank(P(W)) > nj rank (<I>0) +nony — Ty
12Ty — 2Ty @7
= nl(rank (‘I>0) + ng — T).

Proposition 2 implies

rank(Wy @ ®1) > nyrank(Pq), (28)
and
rank(\I’l © '~I>0) Z ng. (29)
By the construction of rank(®1) > n4, the result follows
directly. O
References

[1] Y. Ito. Nonlinearity creates linear independence. Advances in
Computational Mathematics, 5(1):189-203, 1996. 3

[2] S. Liu. Matrix results on the Khatri-Rao and Tracy-Singh
products. Linear Algebra and its Applications, 289(1):267—
277, 1999. 1

[3] D. A. Simovici. Linear Algebra Tools for Data Mining. World
Scientific Publishing Company, 2012. 1, 2

[4] D. S. Tracy and R. P. Singh. A new matrix product and its
applications in partitioned matrices. Statistica Neerlandica,
26:143-157, 1972. 1



