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1. Tracy-Singh product and Khatri-Rao pro-
duct

Given two matrices A ∈ Rm×n and B ∈ Rp×q . Let us
partition A into blocks Aij ∈ Rmi×nj , and B into blocks
Bkl ∈ Rpk×ql . The Tracy-Singh product of A and B [4] is
defined as

A ~ B = (Aij ~ B)ij = ((Aij ⊗Bkl)kl)ij , (1)

where the notion (·)ij follows the convention of referring
to the (i, j)-th block of a partitioned matrix. The matrix
A~B is of the dimension (mp)× (nq), and its rank shares
the same property as the Kronecker product of matrices as

rank(A ~ B) = rank(A) rank(B). (2)

If A and B are partitioned identically, then the Khatri-Rao
product of the two matrices is defined as

A�B = (Aij ⊗Bij)ij . (3)

The matrix A � B is of the dimension (
∑

imipi) ×
(
∑

iniqi). The connection between the Tracy-Singh prod-
uct and the Khatri-Rao product is given as

A�B = Z>1 (A ~ B)Z2, (4)

where Z1 ∈ R(mp)×(
∑

imipi) and Z2 ∈ R(nq)×(
∑

iniqi) are
two selection matrices, satisfying Z>1 Z1 = I∑

imipi
and

Z>2 Z2 = I∑
iniqi . We refer to [2] for concrete construc-

tions of matrices Z1 and Z2, and more technical details re-
garding the Khatri-Rao product. It is then trivial to conclude
the following corollary.

Corollary 1. Given two identically partitioned matrices A
and B, the rank of the Tracy-Singh product and the rank of
the Khatri-Rao product of both matrices fulfils the following
inequality

rank(A�B) ≤ rank(A ~ B). (5)

Furthermore, it is clear that

rank(Z1) =
∑
i

mipi, (6)

and
rank(Z2) =

∑
i

niqi. (7)

Now, we recall the Frobenius’ rank inequality [3], i.e.,
given three matrices A, B, C that have compatible dimen-
sions, then

rank(ABC) + rank(B) ≥ rank(AB) + rank(BC). (8)

A special case of the Frobenius’ rank inequality is the so-
called Sylvester’s rank inequality, i.e., given two matrices
A ∈ Rm×n and C ∈ Rn×p, then the rank of the product of
U and V is bounded by

rank(AC) ≥ rank(A) + rank(C)− n. (9)

Let A ∈ Rm×n1 , B ∈ Rn1×n2 , and C ∈ Rn2×p. By
combining both the Frobenius’ rank inequality and the
Sylvester’s rank inequality, we have

rank(ABC) ≥ rank(AB) + rank(BC)− rank(B)

≥ rank(A) + rank(B)− n1 − n2+

+ rank(B) + rank(C)− rank(B)

= rank(A) + rank(B) + rank(C)−
− n1 − n2.

(10)

If the Tracy-Singh product A~B has full rank, denoted
by

Rts := rank(A ~ B), (11)

then the rank of the Khatri-Rao product A�B is bounded
from below by

rank(A�B) ≥
∑
i

mipi +Rts +
∑
j

njqj −

−mp− nq.
(12)



Note, that the above lower bound is not guaranteed to be
positive. Hence, nothing is conclusive about the rank of the
Khatri-Rao product of two arbitrary full rank matrices.

2. Proof of Proposition 2, 3, 5, and 6
Proposition 2. Given a collection of matrices Ψi ∈
Rnl×nL and a collection of vectors φi ∈ Rnl−1 , for i =
1, . . . , T , let Ψ := [Ψ1, . . .ΨT ] ∈ Rnl×(nLT ) and Φ =
[φ1, . . . , φT ] ∈ Rnl−1×T . Then the rank of the Khatri-Rao
product Ψ�Φ is bounded from below by

rank(Ψ�Φ) ≥ nl rank(Φ)+

T∑
i=1

rank(Ψi)−Tnl. (13)

If all matrices Ψi’s and Φ are of full rank, then the rank of
Ψ�Φ has the following properties:

(1) If nl ≤ nL, then rank(Ψ�Φ) ≥ nl rank(Φ);

(2) If nl > nL and nl−1 ≥ T , then rank(Ψ�Φ) ≥ TnL;

(3) If nl > nL and nl−1 < T , then rank(Ψ�Φ) ≥ nL.

Proof. We can trivially rewrite the Kronecker product for
each partition as

Ψi ⊗ φi = (Inl
Ψi)⊗ (φi1)

= (Inl
⊗ φi)Ψi.

(14)

Then, the Khatri-Rao product of Ψ and Φ can be computed
as the product of two matrices, i.e.,

Ψ�Φ=[Inl
⊗φ1, . . . , Inl

⊗φT ]︸ ︷︷ ︸
=:(Inl

~Φ)∈R(nlnn−1)×(nlT )

diag(Ψ1, . . . ,ΨT )︸ ︷︷ ︸
=:Ψ̃∈R(nlT )×(nLT )

, (15)

where Inl
~ Φ denotes the Tracy-Singh product of the

identity matrix Inl
and T column-wised partitioned matrix

Φ, and the operator diag(·) puts a sequence of matrices
into a block diagonal matrix. By the rank property of the
Tracy-Singh product, the rank of matrix Inl

~Φ is equal to
nl rank(Φ). Further, by the Sylvester’s rank inequality, the
rank of Ψ�Φ is bounded from below

rank(Ψ�Φ) ≥ nl rank(Φ)+

T∑
i=1

rank(Ψi)−Tnl. (16)

Specifically, if all matrices Ψi’s and Φ are of full rank, we
have the following properties.

(1) If nl ≤ nL, then the rank of the block diagonal matrix
Ψ̃ is equal to nlT . By the Sylvester’s rank inequality
[3], we have

rank(Ψ�Φ) ≥ nl rank(Φ) + nlT − nlT
= nl rank(Φ).

(17)

(2) If nl > nL and nl−1 ≥ T , then the rank of Ψ̃ is equal
to nLT , and the rank of (Inl

~ Φ) is equal to nlT . By
the Sylvester’s rank inequality, we have

rank(Ψ�Φ) ≥ nlT + nLT − nlT
= nLT.

(18)

(3) If nl > nL and nl−1 < T , then the rank of (Inl
~ Φ)

is equal to nlnl−1. By the same argument, we have

rank(Ψ�Φ) ≥ nlnl−1 + nLT − nlT. (19)

It is clear that such a lower bound can be even nega-
tive, i.e., practically useless. However, since matrix Φ
is of full rank, there must exist a non-zero vector φi,
so that rank(Ψi ⊗ φi) = nL. Then we have the result
rank(Ψ�Φ) ≥ nL.

Proposition 3. For an MLP architecture F , the rank of
P(W) as defined in Eq. (22) (in the manuscript) is bounded
from below by

rank
(
P(W)

)
≥

L∑
l=1

nl rank
(
Φl−1

)
−

L−1∑
l=1

Tnl

+

L∑
l=1

T∑
i=1

rank
(
Ψ

(i)
l

)
− LTnL.

(20)

Proof. By stacking all row blocks Ψl � Φl−1 for l =
1, . . . , L together, we have P(W) as in Eq. (22) (in the
manuscript). We can rewrite P(W) as

P(W) = diag
(
In1~Φ0, . . . , InL

~ΦL−1
)
·

· diag
(
Ψ̃1, . . . , Ψ̃L

)
· ILTnl

,
(21)

where ILTnl
:= [ITnL

, . . . , ITnL
]> ∈ RLTnL×TnL is a ma-

trix of stacking L copies of the identity matrix ITnL
on top

of each other. Then, by applying Eq. (10), it is straightfor-
ward to get

rank
(
P(W)

)
≥

L∑
l=1

nl rank
(
Φl−1

)
−

L∑
l=1

Tnl

+

L∑
l=1

T∑
i=1

rank
(
Ψ

(i)
l

)
− LTnL

+ TnL.

(22)

The result follows directly.

It is clear that such a bound in Proposition 3 is still very
problem-dependent, and hard to control. Nevertheless, due
to the special structure of ILTnl

, the actual rank bound is
given practically by the largest bound of each individual row
block as characterised in Proposition 2, i.e.,

rank
(
P(W)

)
≥ max

1≤l≤L
rank

(
Ψl �Φl−1

)
. (23)



Proposition 5. Let an MLP architecture with one hidden
layer satisfy Principle 1, 3, and 4. Then, for a learning
task with T unique training samples, if the following two
conditions are fulfilled:

(1) There are T units in the hidden layer, i.e., n1 = T ,

(2) T unique samples produce a basis in the output space
of the hidden layer for all W1 ∈ Rn0×n1 ,

then a finite exact approximator ĝ is realised at a global
minimum W∗ ∈W , i.e., F (W∗, ·) = ĝ, and the loss func-
tion J is free of suboptimal local minima.

Proof. We feed samples X := [x1, . . . , xT ] ∈ Rn0×T

through the MLP to generate the outputs in the hidden layer
Φ1 := [φ

(1)
1 , . . . , φT1 ] ∈ RT×T , which is invertible due

to Condition (2). It can be achieved by employing appro-
priate activation functions as suggested in [1], such as the
Sigmoid and the tanh. Then in the output layer, we have
Φ2 := [φ

(1)
2 , . . . , φ

(T )
2 ] = W>2 Φ1 ∈ Rn2×T . Let us de-

note by Y := [g∗(x1), . . . , g∗(xT )] ∈ Rn2×T the desired
outputs. Then, every pair (W1, (Y Φ−11 )>) is a global mini-
mum of the total loss function.

We then compute the critical point conditions in the out-
put layer as

[
In2
⊗ φ(1)1 . . . In2

⊗ φ(T )
1

]
︸ ︷︷ ︸

:=P2∈R(Tn2)×(Tn2)


∇E(φ

(1)
2 )

...
∇E(φ

(T )
2 )

= 0, (24)

where P2 is a square matrix. By following case (1) in
Proposition 2, we get rank(P2) = Tn2. The result sim-
ply follows.

Note, that in Proposition 5, we do not consider the
dummy units introduced by the scalar-valued bias bl,k. Nev-
ertheless, using similar arguments, the statements in Propo-
sition 5 also hold true for the case with free variables bl,k.

The following result is simply a special case of Proposi-
tion 3 to a two-layer MLP.

Proposition 6. Let a two-layer MLP architecture
F(n0, n1, n2) with dummy units and n2 ≤ n1 ≤ T
satisfy Principle 1, 3, and 4, and 1 := [1, . . . , 1]> ∈ RT .
For a learning task with T unique samples X ∈ Rn0×T ,
we have

(1) if rank([X>,1]) = n0, then

rank
(
P(W)

)
≥ max

{
n1n2, n1(n0 + n2 − T )

}
; (25)

(2) if rank([X>,1]) = n0 + 1, then

rank
(
P(W)

)
≥max

{
n1n2, n1(n0+n2−T+1)

}
. (26)

Proof. It is straightforward to have

rank
(
P(W)

)
≥ n1 rank

(
Φ0

)
+ n2n1 − Tn1

+ 2Tn2 − 2Tn2

= n1
(

rank
(
Φ0

)
+ n2 − T

)
.

(27)

Proposition 2 implies

rank(Ψ2 �Φ1) ≥ n2 rank(Φ1), (28)

and
rank(Ψ1 �Φ0) ≥ n2. (29)

By the construction of rank(Φ1) ≥ n1, the result follows
directly.
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