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1. Gradient Computation

In the paper, we show the gradient of the objective in
Section 3.4. We present more details as follows. The loss
of a tuple is computed as

é(T) = glb(T) + )\lgm'd(T) + A2€7'el (T)
+ Asloym (T) + Maleon(T). )

It is the summation of a set of basic terms, i.e.,

¢, = max(d(x,y) — d(x,z) + «,0), )
ly = max(a — d(x,y),0), (3)
€3 = d(X7 Y)a (4)

where x, y, and z are vectors and « represents the margin.
d(x,y) = ||x — y||>. ¢ is the triplet loss, ¢ is the max
function, and /3 is the square loss.

Gradient of /; The gradients of /; with respect to x, y,
and z can be written as

o4 —2(y —z), if d(x,y) —d(x,2z) +a >0
ox 0, otherwise

o [-20x—y), if d(x,y) —d(x,z) +a >0
dy o, otherwise

o [2(x—z), if d(x,y) —d(x,2) + >0
dz |0, otherwise

Gradient of /o The gradients of ¢, with respect to x and
y can be written as

0l | -2(x—y), if a—d(x,y)>0
ox o, otherwise

0l J2(x—vy), if a—d(x,y) >0
dy o, otherwise

Gradient of /3 The gradients of ¢3 with respect to x and
y can be written as

0ls

aXZQ(X_y)v
0l

— =2(y — x).
dy (y —x)

2. Data Preparation

Our method is a semi-supervised method. It requires
only the AU intensity annotations of peak and valley frames
in training sequences. To verify the effectiveness of the pro-
posed method, we need to evaluate on databases that pro-
vide only intensity annotations for peak and valley frames
in the training set.

FERA 2015 [10] and DISFA [4] provide frame-level in-
tensity annotations. To evaluate our method, we select the
peak of valley frames according to the definitions of peaks
and valleys in [3] and the provided annotations in the train-
ing set. We assume only annotations of peak and valley
frames are given while annotations of other frames are un-
known. After obtaining peak and valley frames, sequences
can be split into segments. For each segment, we sample a
set of training tuples for model learning.

3. Convergence

In Section 3.4 of the main script, we present the learn-
ing and inference of our model. Here, we present the con-
vergence of our method. We use AU 12 as an illustration.
The performance of AU12 at different iterations is shown in
Fig. 2. As the iteration proceeds, the algorithm converges.
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Figure 1. An illustration of the prediction of AU12 on a sequence.
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Figure 2. The performance of AU12 at different iterations. The
blue line is the performance while the red line is the moving aver-
age.

We present the prediction of AU12 on a sequence in Fig. 1.
We compare the performance of our method with CNN-
P and CNN-F. CNN-P uses only annotated frames while
CNN-F uses the annotations of all the frames. As shown
in the figure, our method gives more accurate predictions
than CNN-P and CNN-F.

4. Detailed Comparison with CNN-F

In Table 2 of the main script, our semi-supervised model
outperforms CNN-F because CNN-F tends to overfit the
training set. On FERA2015, the average training perfor-
mance of CNN-F is (ICC:0.98, MAE:0.09) and the testing
performance is (ICC:0.62, MAE:0.73). However, the train-
ing performance of our method is (ICC:0.87, MAE:0.40)
and the testing performance is (ICC:0.67, MAE:0.66).

5. The Study of Increasing Annotations

In Section 4.2 of the main script, we compare with the
baseline methods. Here, we study our method when in-
creasing the number of AU intensity annotations. We per-
form an experiment on FERA 2015 by adding the intensity
annotations of 20% of subjects each time. The results on
FERA2015 are shown in Table 1. Before 60%, the perfor-
mance gets better than without using additional annotations.
Since the whole database is small, when using the annota-
tions of more than 60% of subjects, the annotation domi-
nates the learning and the model fits the training set better.
However, the effect of the knowledge becomes weak and the
model generalizes worse. The performance of our method
when using all the annotations is better than CNN-F (Table
2 in the main script) because the knowledge helps improve

the generalization ability to some extent.

Table 1. Performance under different annotation rates
subjects 0% 20% 40% 60% 80% 100%
ICC 0.67 0.67 0.68 0.66 0.65 0.65
MAE 0.66 0.63 0.64 0.68 0.68 0.70

6. Temporal Order on Features

In Section 3.1 of the main script, the assumption of tem-
poral order on features comes from human heuristics. As
shown in Fig. 3, A, B, C and D are four frames in a segment.
Since the appearance of A is more similar to B than C, the
features of A are encouraged to be more similar to B than
C during learning. The right figure shows the loss of the
temporal feature order on the testing set. The learned fea-
tures satisfy the assumption more as the learning proceeds.
Dropping such knowledge leads to the drop of performance
as shown in Table 2 in the manuscript.
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Figure 3. Left: appearance changes. Right: loss of feature order

7. Evaluation by Continuous Prediction

In the paper, we discretize the continuous prediction into
discrete AU intensity for evaluation in Section 4.2. Here we
also present the performance of different methods by using
the continuous AU intensity prediction. Table 2 shows the
comparison between our method and the baseline methods.
Table 3 shows the comparison with the state-of-the-art AU
intensity estimation methods. Note that only our method is
a semi-supervised method while others are fully supervised
methods. Table 4 shows the comparison with the state-of-
the-art semi-supervised learning methods. We can draw the
same conclusion from the evaluations with using the con-
tinuous prediction.



Table 2. Comparison to the baseline methods. Bracketed and bold numbers indicate the best performance; bold numbers indicate the second

best.
FERA 2015 DISFA

AU 6 10 12 14 17 avr. 1 2 4 5 6 9 12 15 17 20 25 26 avr.

CNN-F [.78]1 .70 .84 29 [.55]| .63 .02 .08 .44 .06 54 23 .76 13 18 [[11] .80 .30 .30
CNN-P 73 49 81 18 23 49 .07 03 .12 .02 .53 06 .73 .01 .05 .00 71 29 22
CNN-K 27 26 31 .16 -09 | .18 .02 05 .01 .06 -30 .05 .40 .02 05 .02 -30 -.14 | -.01

~ | KBSS-Pair | .74 .74 83 41 45 .63 A5 07 51 22 48 23 77 [.26] 23 .06 78 .38 34
5’ KBSS-Tri 71 69 85 40 49 .63 .07 10 43 27 46 25 74 [.26] 25 .06 .83 34 34
8 KBSS-NO | .70 .70 .85 39 49 | .62 | .12 [12] 44 25 50 22 .70 .13 A5 .03 .82 [43]] .33
= KBSS-NR | .76 .67 .84 .39 .50 .63 11 04 41 25 43 26 [.78] .16 23 .09 .83 .19 32
KBSS-NS | .75 .73 [86] 42 49 | .65 | .12 .09 [.53] 26 .51 [.28] .72 21 [.27] .07 [.84] .30 35
KBSS-NC | .74 72 84 43 51 65 | 15 11 33 27 [.56] 24 71 .20 21 .02 .83 [43]] 34
KBSS 77  [.75] [.86] [.47] .52 | [.67] .25 A1 48 [.28] .52 25 72 24 26 .05 [.84] 42 | [.37]

CNN-F 64 80 .61 1.11 .76 | .78 68 48 82 20 41 44 41 31 56 31 .60 72 .50
CNN-P 70 1.01 .69 1.13 .70 85 | [.51] [.36] 99 .17 .40 38 .43 23 46 .25 73 55 45
CNN-K 98 139 1.16 [94] 1.14 | 1.12| 58 78 97 50 .53 39 .67 .83 44 48 123 .81 .68
KBSS-Pair | .70 .79 59 1.16 .92 | .83 94 63 77 [J11] 37 [.23] 38 [19] 55 25 62 47 46

g KBSS-Tri 67 82 .60 .98 .69 75 .58 56 78 .18 [.31] .26 [.36] .21 [.40] [.20] .50 44 40
s KBSS-NO | .74 76 56 1.11 .70 | .77 | 1.05 91 1.02 .18 .55 42 .58 43 93 77 .55 .63 .67
KBSS-NR | 67 82 .60 1.09 .80 | .80 | 1.27 1.13 132 24 53 28 .39 .36 55 46 .55 .69 .65
KBSS-NS 65 74 [55] 1.05 72 74 1 1.02 79 82 20 54 30 43 .30 S50 41 55 S1 53
KBSS-NC | .66 .78 .56 1.13 .78 | .78 | 1.16 .68 1.02 .16 .34 27 .50 .30 73 .49 52 52 .56
KBSS [.62] [.72] [.55] .99 [.69]| [.71]| .53 54 [.60] [.11] [.31] .28 [.36] [.19] 46 27  [49] [40]] [.38]

Table 3. Comparison to the state-of-the-art AU intensity estimation methods. Only our method is a semi-supervised method.

FERA 2015 DISFA
AU 6 10 12 14 17 | avr. 1 2 4 5 6 9 12 15 17 20 25 26 avr.
CCNN-IT[11]* | .75 .69 [.86] 40 45 | 63 | 20 .12 46 .08 48 44 .73 29 [.45] [.21] .60 .46 | [.38]
~ 2DC [9]* 76 71 85 45 [.53]] .66 | [.70] [.55] [.69] .05 [.59] [.57] [.88] [.32] .10 .08 [.90] .50 | [.50]
s CNN 1] 74 65 83 22 [53]] 60| 06 04 38 16 48 33 77 21 20 A2 .76 44 | 33
g VGG [¢] 69 64 76 35 38 | 56| .32 32 41 15 39 14 57 .05 19 04 63 24 .29
= OR-CNN[5] | .74 70 85 34 51 | .63 |-01 .02 21 .10 47 30 76 .14 21 .07 .84 [59]| .31
KBSS (ours) | [.77] [.75] [.86] [47] .52 | [.67]] 25 .11 .48 [28] .52 25 72 24 26 05 84 42| 37
CCNNAIT[I1]% | 1.17 143 97 165 108 | 1.26]| .73 72 103 21 72 51 .72 43 50 44 1.16 .79 | .66
2DC [9]* T - - - - - -
Eé CNN [1] 71 87 64 114 72 | 82 | 53 49 67 .18 35 29 39 24 47 27 67 53 42
s VGG [8] 68 .84 71 [.94] [.67]1| .77 | [.32] [.28] [.58] .11 .34 [.20] .46 .20 [46] 24 .70 .53 37
OR-CNN [5] [.56] [.72] [49] .95 .69 | [.68]| 48 45 95 [.04] [.28] .23 [.27] [.12] .47 [.12] [40] [.32]| [.34]
KBSS (ours) 62 [721 55 99 69 | 71| 53 54 60 .11 31 28 .36 19 [46] 27 49 40 .38
Table 4. Comparison to the state-of-the-art semi-supervised methods.
FERA 2015 DISFA
AU 6 10 12 14 17 | avr. 1 2 4 5 6 9 12 15 17 20 25 26 avr.
~ Ladder [6] 65 63 79 24 45 | 55 -01 .03 .16 .01 50 .10 .64 -.01 .06 .00 57 22 .19
- RSTP [7] 68 63 77 24 48 | 56 | -00 05 20 .05 42 .11 .58 .09 13 .05 .68 .38 23
g LBA [2] g1 65 80 28 50 | .59 .04 06 39 01 41 .12 .73 13 27 10 82 43 .29
= | KBSS(ours) | .77 .75 .86 47 52 | .67 | 25 .11 48 28 52 25 72 24 26 05 .84 42 37
Ladder [6] 72 82 62 115 66 | .79 | 68 39 94 14 26 29 34 17 26 13 78 52 41
Eé RSTP [7] 7392 70 124 .61 | 84 | 1.17 .80 123 25 34 38 42 .23 66 39 59 .39 57
s LBA [2] 63 79 60 107 62 | 74| 43 29 51 .10 30 .19 .30 A1 31 14 40 .39 29
KBSS (ours) | 62 .72 .55 99 .69 | .71 | 53 54 60 .11 31 28 .36 19 46 27 49 40 38
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