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The supplementary material provides details, additional
results, and further comparisons.

Shaded areas in the plots denote + one standard devia-
tion.

1. Additional results for AL on image data

In Figure A1 we compare all of the acquisition func-
tions used in [ 6] when using uncertainties from either MC
dropout, an ensemble, or a single network. For both MC
dropout and ENS, and on both MNIST and CIFAR-10, Vari-
ation Ratio performs best. The differences between the ac-
quisition functions are more pronounced in MNIST, espe-
cially in the beginning stages. In Figure Alc and Alf we
compare the geometric approaches [52] and [01] with the
corresponding baselines: random selection, and the entropy
of the softmax outputs of a single network. Both geomet-
ric approaches on MNIST perform similar to random. On
CIFAR-10, both geometric functions perform worse than
random, however the representativeness approach is consis-
tently a few percentage points more accurate than the core-
set approach.

We show a comparison of the uncertainty methods and
acquisition functions also on CIFAR-10 with the K-CNN
architecture in Figure A2. The results are qualitatively the
same as for CIFAR-10 trained on the DenseNet (Figure 1b).

The AL setup used in this study has many associated hy-
perparameters. Generally, the hyperparameters chosen were
based on previous work, or chosen based on early qualita-
tive results or computational efficiency. To show that tuning
most hyperparameters (within reasonable range) has little
effect, we run the AL experiment on CIFAR-10 using the
K-CNN architecture for multiple settings (Figure A3). The
hyperparameters explored are: number of images per acqui-
sition step (with the subset pool size always being 10 times
the acquisition size), number of images in the subset pool,
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number of forward passes in the MC dropout setting, num-
ber of networks in the ensemble, and dropout rates for the
MC dropout setting. Most tested hyperparameters have lit-
tle effect, with the exception of using only 2 or 5 forward
passes for MC-Dropout, only 3 classifiers in an ensemble,
or deviating strongly from the dropout rate of 0.25/ 0.5 after
convolution / dense layers. In these cases the performance
gets slightly worse.

In Figure A4 we additionally show results for Monte-
Carlo Dropout with increased capacity on CIFAR-10 with
the K-CNN network. The number of filters for the convolu-
tional layers and the number of necurons for the dense lay-
ers is increased so after applying dropout with rate of 0.25
and 0.5, respectively, the same number of activations are
present compared to a network used in the ensemble-based
approach. For MC-VarR there is no benefit, though for MC-
dropout with entropy as an acquisition function there is a
small benefit. The performance of the ENS-VarR is not
reached, though, MC dropout has 25 forward passes and
on average the same amount of activations as the ensemble-
based approach with 5 members.
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Figure Al: Test accuracy as a function of acquired images using different acquisition functions on MNIST (panels a, b,
c. S-CNN architecture) and CIFAR-10 (panels d, e, f. K-CNN architecture). See main paper for a detailed description of
the acquisition functions, “Random” corresponds to random selection of data-points which does not depend on the predictive
uncertainty. In (panels a, d) we compare different acquisition functions for MC Dropout uncertainties with 25 forward passes.
In (panels b, e) same as before but with uncertainties provided by an ensemble of five networks. In (panels c, f) the softmax-
entropy of a single network is used as an uncertainty measure. Solid lines show results averaged over five repetitions. The
shaded area indicates the standard-deviation band across these five runs (% one standard-deviation).
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Figure A2: Test accuracy as a function of acquired images. Variation Ratio for MC dropout, Variance for the ensemble, and
two density based acquisition functions are compared to its respective random acquisition function with the simple K-CNN
architecture for CIFAR-10.
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Figure A3: Test accuracy over acquired images for different hyperparameter settings on CIFAR-10 using the simple K-CNN
architecture. Unless otherwise noted, 25 forward passes are used for MC-Dropout, and 5 classifiers for the ENS approaches.
Variation Ratio is the acquisition function used for all experiments.
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Figure A4: Increasing capacity for Monte-Carlo Dropout in isolation. Plots show test accuracy on CIFAR-10 with K-
CNN using Variation Ratio and Entropy as an acquisition function. MC-VarR-inc.cap: MC dropout with Variation Ratio as
acquisition function. The number of filters / neurons (conv / dense layer) was increased so the same number of activations are
present after dropout rate of 0.25/0.5. There is a small benefit for MC-Entropy, especially for little data, though no benefit

is visible for VarR.



2. Implicit ensembling

We evaluate the use of three implicit ensemble methods
described in the literature as opposed to using a full ensem-
ble of classifiers for uncertainty estimation. The approaches
used are:

Snapshot ensembling proposed by [28] is a method
to train an implicit ensemble using a cyclic learning rate
schedule to converge to different local minima. The diver-
sity encouraging ensemble (DEE) by [60] uses a base net-
work trained for a small number of epochs as the initial-
ization for n different networks, each trained using differ-
ent dropout rates to encourage diversity. In the splithead
approach by [48] each member of the ensemble shares the
same base model, with only a final dense layer being unique
to each classifier.

The different implicit ensemble methods were imple-
mented with little deviation from the original specifications.
For the Snapshot ensembles, we use the cyclic learning rate
schedule based on the shifted cosine function, with an ini-
tial learning rate of 0.1, and stochastic gradient descent.
Each Snapshot is trained for the total number of epochs / N,
where N is the desired number of classifiers. To be consis-
tent with our previous experiments, N is equal to 5, and the
total number of epochs is 150. Details of the shifted cosine
function and the rationale of the method can be found in
[28].

For the diversity encouraging ensembles (DEE), we
again match the total number of epochs and classifiers to
our previous experiments. The network is first trained for
25 epochs with stochastic gradient descent, with an initial
learning rate of 0.01, and momentum of 0.9. A cyclic learn-
ing rate schedule using the shifted cosine function is again
used, and 5 networks are trained initialized with the weights
from the first training phase (the 25 epochs), and the 0.01
learning rate. The different dropout rates for each network
are: (0.25,0.25,0.5), (0.25,0.5,0.5), (0.25,0.25,0.25),
(0.25,0.3,0.4), (0.25,0.5,0.25), (0.2,0.4,0.4), with the
first in the list being the rates used in the initial implemen-
tation and the first training phase. The dropout schedules
were chosen empirically, as there is no heuristic provided in
the paper. More details can be found in the original publi-
cation [60].

The split-head ensemble approach is inspired by [48].
We share the weights of every layer except for the final
fully-connected layer before the output layer. All other
training specifications do not change from the baseline ex-
periments. The paper also explores the idea of bootstrap-
ping, however found that in practice it is best to provide
each head of the network with as much data as possible -
considering that we use small amounts of data in our AL
experiments, we opt to not use any bootstrapping.

All experiments on implicit ensembles were run for 5
repetitions.
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Figure A5: Test accuracy over acquired images using differ-
ent implicit ensembling techniques (CIFAR with K-CNN).
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In figure A5 we compare these implicit ensembling
methods against a plain ensemble using Variation Ratio as
an acquisition function. All implicit ensemble techniques
achieve a significantly lower accuracy compared to the stan-
dard ensemble. The question of why implicit ensembling
methods perform worse is left for future research.

3. Additional results for uncertainty calibra-
tion

To assess calibration ([7]) quality we determine whether
the expected fraction of correct classifications (as predicted
by the model confidence, i.e. the uncertainty over pre-
dictions) matches the observed fraction of correct classifi-
cations. When plotting both values against each other, a
well-calibrated model lies close to the diagonal. Results
are shown in Figure 3 in the main paper after 3 acquisition
steps. Figure A6 shows calibration plots for randomly ini-
tialized networks and after 6, 12, 18 and 24 acquisition steps
respectively.

The mean-squared-error (MSE) between the main diago-
nal and the calibration line is used to quantitatively express
calibration quality of a model (see Figure 3b in the main
paper).

Additional measures are the negative log likelihood
(NLL) and the Brier score. Quantitative results for the lat-
ter two measures are shown in Table 3 in the main paper
for the first three acquisition steps. The results across all
acquisition steps are shown in Figure A7.

4. Uncertainty Decomposition

Predictive uncertainty can be decomposed over a label
into data-dependent aleatoric uncertainty (which is intrin-
sic to the data and cannot be resolved, even in the limit
of infinite training data) and epistemic uncertainty (uncer-
tainty over the correct model-parameters that goes Lo zero
in the limit of infinite data). To incorporate the separation
between aleatoric and epistemic uncertainty into AL, input-
dependent variance (over predictions) is learned as an extra
output that splits off of the network at the final layer before
the prediction, as first introduced in [47]. This technique
has recently been implemented for the regression case in
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Figure A6: Calibration plots at different acquisition steps (200-2,600-5,000-7,400-9.800 images) for different models. “Ini-
tialization” refers to fully trained networks using the initial pool of labeled data (drawn by random selection). MC-VarR:
MC Dropout with Variation Ratio acquisition. ENS-VarR: Ensembles with Variation Ratio acquisition. Single-Entropy: sin-
gle network with softmax-entropy for the acquisition. The lines labeled with “~-Random” correspond to random acquisition.
Perfectly calibrated models would lie on the main diagonal (dashed line). Results show DenseNet on K-CNN.
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Figure A7: Negative Log Likelihood (NLL) and Brier score for different acquisition steps for a single network with softmax-
entropy acquisition, MC Dropout and an ensemble (the latter both with Variation Ratio acquisition). Particularly in the low-
data regime, ensembles lead to better uncertainties. After a sufficient amount of training MC Dropout and ensembles perform
equally well. Uncertainties of a single network are consistently worse. These results are consistent with the calibration score
(MSE) shown in the main paper (Figure 3b). Results are shown for DenseNet on CIFAR-10.

[36] using MC Dropout for estimation of the total predic-
tive uncertainty, as well as for ensemble-based uncertainty
estimation in [40].

Decomposing the uncertainty output from the neural net-
work potentially is useful for active learning: points with a
high epistemic uncertainty should be sclected, as this type
of uncertainty can be reduced with more data, while points
with high aleatoric uncertainty should be avoided, as this
uncertainty stemming from the input dependent noise will
not decrease with more data. To practically incorporate the
aleatoric uncertainty into an acquisition function, we tried
two approaches, both of which involve learning the vari-
ance of the inputs with the split-head architecture initially
proposed in [47], using the adaptation to the classification
case and the associated loss function (eq. 9) proposed in
[36]. The first method learns the aleatoric variance, but still
only uses the epistemic component of the uncertainty to se-
lect new points (corresponding to the previous acquisition

functions used). The second method is a hybrid approach in
which first the N most epistemically uncertain points (based
on of the softmax outputs) are chosen, and from this subset
the N/4 points with the lowest aleatoric uncertainty are se-
lected.

For regression, we use the loss function from [36]
with s; = log(c?) being the learned variance (as opposed
to using a fixed variance in traditional learning)

1O = X gelslv -3 g ©
For classification, we also use the implementation in [36].
The logit output f; (input to the softmax activation) is cor-
rupted with Gaussian noise with variance oV and fed to
the softmax activation .S times. Intuitively, both of these
loss functions encourage the model to increase the input-
dependent, learned variance when the model predicts incor-
rectly with high confidence, and to decrease the variance
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Figure A8: Test accuracy as a function of acquired images using acquisition functions that incorporate a decomposition of
the total uncertainty into its aleatoric and epistemic components. Total refers to the original acquisition function, in which
the network does not learn any variance, and the uncertainty is based on the average softmax outputs. Epistemic refers to
learning the variance as a separate parameter, but only using the softmax based uncertainty in the acquisition function as
in the previous method. Epistemic + Aleatoric refers to the hybrid approach described in the text. All functions use the
Variation Ratio as the method for measuring epistemic uncertainty. Results are shown for MNIST on S-CNN and CIFAR-10

on K-CNN.

when the model predicts correctly with high confidence.
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We show results in Figure A8. The addition of the
aleatoric uncertainty, in both methods described above, led
to slightly worse results for both ENS and MC-Dropout for
MNIST. On CIFAR-10, the addition in the ENS case results
in virtually identical performance, while for MC-Dropout
there is a notable drop in performance. Some potential
reasons for this performance are: the combination of the
epistemic and aleatoric uncertainty in the actual acquisi-
tion function is not adequate, the datasets used (MNIST and
CIFAR-10) inherently do not contain much input noise, and
thus the aleatoric measure adds no information (or inaccu-
rate information), and the aleatoric approximation is poor,
especially in the carlier iterations with little data.

To investigate the third option, we perform an experi-
ment with the toy regression function used in [47]. A sim-
ilar regression example was shown recently in [9] (albeit
with a different underlying function), wherein the use of
the decomposition of uncertainty for AL was also posited.
We present an example toy regression function with a spe-
cific sampling regime for the training data, and indeed, the
decomposition would work well for the situation provided.
However in the early stages of AL, the function approx-
imation can be poor (unlike the example just discussed).
To investigate this, we start with five random points as
the training data, and randomly add two points each iter-

ation. We find that in the early stages of AL, in which
the function approximation is poor or very generalized, the
learned variance is similarly not very accurate, as this is
also a learned parameter (see Figure A9). As in AL we are
mainly concerned with relative uncertainties, and not abso-
lute uncertainties, the Spearman rank correlation between
the two curves is, therefore, informative; at low amounts
of data, this correlation is spurious and noisy. Extrapolat-
ing to the classification case, a similar situation could oc-
cur; even though the loss function is rather different, the
aleatoric variance is still a learned parameter.

5. AL for diagnosis of diabetic retinopathy

The retinal images shown in Figure A10 show images
containing lesion areas which indicate diabetic retinopathy
(images (a) and (b)). Different lesion types, like small red
dots, micro-aneurysms, hemorrhages are responsible for di-
abetic retinopathy. For a layman it is hard to spot these le-
sions, especially when the disease is at an early stage, as the
lesions tend to grow the longer diabetic retinopathy stays
untreated.
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Figure A9: Toy regression example, averaged over 10 repetitions with different data subsets. a) The underlying sinusoid
function, and the predicted mean based on the training data seen at a specific iteration (62 data-points). b) The predicted
variance function compared to the true variance function at 62 data-points. ¢) The correlation between the predicted and true
variance function, as a function of the number of points in the training data (randomly selected).

Figure A10: Eye fundus example images from [1 1] which were used in a 2015 Kaggle challenge. The two images on the
left show signs of diabetic retinopathy, whereas the other two images are healthy. For training the images were cropped and
scaled to 512x512 pixel size.



