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We here give details on the network architectures and
present additional visual results.

A. Network Architecture
Our networks consist of multiple residual modules (c.f .

[12]) as shown in Fig. 9. Across all modules, we keep the
kernel size k and the stride s constant as depicted. For
all convolutions with a kernel size k > 1, we use reflec-
tive padding of size 1. Altering the spatial resolution and
number of feature channels requires special handling of
the identity pathway of the residual modules. For down-
sampling (Fig. 9, middle), we simply drop every other pixel
and initialize the added feature channels as zero using zero-
padding. For up-sampling (Fig. 9, right), we use nearest
neighbor interpolation and a 1× 1 convolution to project
the feature dimension. We experimented with more sophis-
ticated up- and down-sampling alternatives, but found no
significant benefits.

In all experiments with images as inputs, processing
in our networks begins with a feature generation module,
which produces an initial representation with fin feature
channels. This module is equivalent to the residual mod-
ule operating at constant resolution (Fig. 9, left), but with
the first rectified linear unit and identity pathway removed.
Each module is only parametrized by the number of fea-
ture channels added during down-sampling ∆f↓ or removed
during up-sampling ∆f↑, and we pair each up-sampling and
down-sampling module with a subsequent module of same
resolution to form one residual block. Thus, we specify net-
work architectures by a desired number of initial features
f̂in, output features f̂out, features at the bottleneck finner,
number of desired down-sampling blocks d in the decoder,
and residual blocks at the bottleneck b. We match the num-
ber of down-sampling blocks in the encoder with the num-
ber of up-sampling blocks in the decoder. We set it to 3
for an output resolution sout = 32 and increase it by 1 for
every doubling of sout. If input and output resolutions are
different, we add di = log2 sin − log2 sout down-sampling
blocks or do = log2 sout− log2 sin up-sampling blocks ac-

∗This work was carried out while at TU Darmstadt.

cordingly. For all networks, we scale input images to pow-
ers of 2. We compute the number of feature channels to add
for each down-sampling block as

∆f↓ =

⌊
finner − f̂in

di + d

⌋
, (10)

and adjust the number of initially generated features as

fin = f̂in + (finner − f̂in) mod ∆f↓ (11)

to obtain integral numbers for the number of feature chan-
nels. Analogously, we compute the number of feature chan-
nels added per up-sampling block as

∆f↑ =

⌊
finner − f̂out

do + d

⌋
. (12)

To obtain predictions with the desired number of output
channels (equaling sout for voxel tube networks and the
number of shape layers ×6 for Matryoshka networks) we
simply add a 2D convolution with kernel size 1 as final layer
to our networks. We summarize the architectures and train-
ing schedules used in the individual experiments in Tab. 7.

For a batch size of 128, we start with a learning rate of
0.001 and reduce it by a factor of 10 after drop epochs. For
any different batch size, we scale the learning rate accord-
ingly. All models were trained on a single GPU.

For the ablation studies, we used a voxel tube network
as summarized in the penultimate row of Tab. 7. Since the
networks for the shape-from-silhouette task and the ablation
studies were trained on renderings of smaller resolution and
on a smaller number of categories, we roughly halved the
number of feature channels at the bottleneck (setting it to
257 for an integer ∆f↑).

For the study on network architectures, we refer to the
voxel tube network as described above as ResNet-based net-
work. We remove the identity pathways from all resid-
ual modules to obtain an Encoder/decoder network, and
add skip connections between layers of same spatial res-
olution to obtain a U-Net, c.f . [23]. To adapt the num-
ber of feature channels for the skip connections, we use a
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Figure 9: Residual modules. Each residual module consists of Batch normalization (BN) and Rectified Linear Unit (ReLU)
layers followed by a 2D convolution, except for the up-sampling module where we replace the first convolution with a
transposed convolution. The number of feature channels is denoted as f . Moreover, k denotes the filter size and s the stride.

Network sin sout batch size epochs drop f̂in d finner b f̂out

ShapeNet-all
Voxel tube 128 32 128 45 15 8 3 512 1 32
Matryoshka 128 32 128 40 20 8 3 512 2 128

High resolution
Matryoshka 128 32 128 30 20 8 3 512 0 128
Matryoshka 128 64 128 30 20 8 4 512 3 128
Matryoshka 128 128 32 30 20 8 5 512 1 128
Matryoshka 128 256 8 30 20 8 6 512 0 128

Shape from Silhouette
Matryoshka 64 32 128 40 15 8 3 257 2 32

Shape from ID
Matryoshka 2 512 4 28K 12K – 8 1 0 196

Ablation studies
Voxel tube 64 32 128 40 15 8 3 257 2 32

Shape from Similarity
Matryoshka 1 128 8 60 25 – 7 2424 0 128

Table 7: Network architectures for individual experiments. See text for a description of the network parameters.

1× 1 2D convolution akin to the identity path of the up-
sampling module in Fig. 9. The DenseNet-inspired version
(c.f . [14]) of our voxel-tube network consists of 7 dense
blocks (B), 2 up-transitions (U) and 3 down-transitions (D)
arranged as BDBDBDBBUBUB. Each dense block con-
tains 2 dense layers with an expansion factor of 16. For
the down-transitions we halve the spatial resolution while
keeping the number of feature channels constant. For the
up-transitions we double the spatial resolution and halve the
number of feature channels.

B. More Results

Shape from silhouette. We investigate the performance of
our Matryoshka network on the task of reconstructing a 3D
shape from a single silhouette image. To that end, we re-
construct the shapes of the 3 categories with the most exam-
ples (chair, car, table) from ShapeNet-core with the dataset

Category car chair table mean

Shape from silhouette 86.7 53.2 58.8 66.2

Table 8: Shape from silhouette on ShapeNet-core.

split and shapes from Choy et al. [5]. We obtain silhouettes
from the alpha-channels of the renderings of Choy et al. As
can be seen in Tab. 8, the network performs much better
on cars than on tables or chairs. This can be attributed to
the approximately convex shape of cars, which makes their
silhouette a very effective cue for the overall shape. Com-
pared to the easier setting of reconstructing shapes from a
color image, the network performs remarkably well. Note,
however, that the network for predicting shapes from color
images was trained in a category-agnostic way, making the
prediction considerably harder.



Real-world images. To assess the performance of our
proposed network for real world examples, we tested it on
images from the Stanford Products Dataset [37] (chairs) and
the web (cars). Qualitative examples are shown in Fig. 10
(chairs) and Fig. 11 (cars). In both cases, we trained a
category-specific Matryoshka network to predict 3D shapes
at 1283 resolution from a single image. For predicting
chairs, we took the renderings of Choy et al. [5] and cre-
ated ground truth shapes of higher resolution from the cor-
responding ShapeNet [4] models using binvox [36]. Since
most images of cars found on the web are recorded from
different camera positions than the renderings of Choy et
al., we re-rendered the car shapes from ShapeNet with ran-
dom camera positions (focal length ∈ [40mm, 90mm), az-
imuth ∈ [0◦, 360◦), elevation ∈ [0◦, 25◦]) and environment
maps collected from the web1,2. We find that Matryoshka
networks generalize well to real-world imagery even when
only trained on synthetic images. They are able to recon-
struct thin structures (e.g., the legs of the right-most chair
in Fig. 10) and a wide variety of shapes (both Figs. 10 and
11).
Synthetic images. We show more results for predicting 3D
shapes of high resolution in Figs. 13 (airplanes), 14 (chairs),
and 12 (cars). The input images are renderings from Choy

et al. [5] and the shapes have been converted to binary voxel
grids using binvox [36]. The ground truth car shapes have
been provided by Tatarchenko et al. [27]. Supporting the
quantitative results from the main paper, learning to recon-
struct 3D shapes at higher resolution produces much more
accurate predictions, as can be seen for different resolutions
in Fig. 12. Even for highly varied classes such as airplanes
or chairs, Matryoshka networks produce high-quality re-
constructions. Finally, we show qualitative examples of re-
constructed shapes at low resolution from a voxel tube net-
work and a Matryoshka network in Fig. 15. Both networks
were trained on 13 categories from ShapeNet-core. Quan-
titative results for this experiment can be found in Tab. 2 in
the main paper.
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Figure 10: Qualitative results at high resolution (1283) for real-world images of chairs. For a given input image (top
row), our Matryoshka network predicts a 3D shape (bottom row).

Figure 11: Qualitative results at high resolution (1283) for real-world images of cars. For a given input image (top row),
our Matryoshka network predicts a 3D shape (bottom row).
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Figure 12: Qualitative results at varying resolution. We train Matryoshka networks to reconstruct 3D shapes from a single
image rendered from ShapeNet models (top row) for output resolutions 323, 643, 1283, and 2563. The last row shows the
ground truth shapes at 2563.



Input Matryoshka network at 1283 Ground truth

Figure 13: Qualitative results at high resolution (1283) for airplane images rendered from ShapeNet models.



Input Matryoshka network at 1283 Ground truth

Figure 14: Qualitative results at high resolution (1283) for chair images rendered from ShapeNet models.



Input Voxel tube network at 323 Matryoshka network at 323 Ground truth

Figure 15: Qualitative results at low resolution (323) for images rendered from ShapeNet models. For input images
(left-most row), we predict 3D shapes using a voxel tube network (2nd column) and a Matryoshka network (3rd column).
Ground truth shapes are shown in the right-most column.



Input Voxel tube network at 323 Matryoshka network at 323 Ground truth

Figure 15: Qualitative results at low resolution (323) for images rendered from ShapeNet models (continued).



Input Voxel tube network at 323 Matryoshka network at 323 Ground truth

Figure 15: Qualitative results at low resolution (323) for images rendered from ShapeNet models (continued).


