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1. Gaussian Process
Gaussian process (GP) is a collection of random vari-

ables, any finite number of which have a joint Gaussian dis-
tribution [4]. It is a flexible Bayesian nonparametric prior
for data-driven modeling.

Suppose that N input-output pairs, {X,Y} =
{xi,yi}Ni=1, are generated from

y = f(x) + ε, ε ∼ N (0, σ2I), (1)

where we assume that the nonlinear functions f(x) have a
GP prior with kernel k(x,x′),

f(x) ∼ GP(0, k(x,x′)), (2)

and the noise ε is Gaussian with σ2.
In this case, the output y∗ of a query input x∗ can be ele-

gantly predicted from p(y∗|x∗,X,Y), due to the Gaussian
property of GP [4],

y∗ = k(x∗,X)[K(X,X) + σ2I]−1Y, (3)

where the vector k(x∗,X) is constructed by computing
similarities between query and memory inputs, i.e., (k)i =
k(x∗,xi), i = 1, ..., N . The matrix K(X,X) is con-
structed by computing similarities between memory inputs,
i.e., (K)i,j = k(xi,xj), i, j = 1, ..., N . More technical
details can be found in [4].

2. Basic Memory Module via GP
In this section, we flexibly adopt GP as a basic mem-

ory module in Fig. 1. Specifically, we treat {X,Y} =
{xi,yi}Ni=1 as input-output pairs in memory. For a query
input x∗, GP can predict the query output y∗ from memory,
according to Eq. (3).

We rewrite Eq. (3) as a weighted sum of memory out-
puts,

y∗ =
∑N

i=1
w(x∗,xi)yi = wY, (4)
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Figure 1. Basic memory module via Gaussian Process (GP).

where the weight vector is encoded by similarity compari-
son between query and memory,

w = k(x∗,X)[K(X,X) + Σ]−1. (5)

In this case, GP can be used as memory machines, allowing
to make effective non-parametric predictions by comparing
similarities between query and memory. Furthermore, sim-
ple kernel operations in GP may be preferable to encode
similarities, compared to large network structure designs
with complex training strategies in the previous memory
networks [5, 6]. This fact is important to alleviate over-
fitting, especially when learning with few examples.

3. Data Sets
For WEB101, we use Google Engine to collect images

that have the same classes as UCF101. Specifically, we first
expand the name of each action class respectively with man,
boy, woman and girl, aiming at increasing collection diver-
sity. Then, we manually filter out the mislabeled images,
noisy images containing only objects or texts, etc.

For DIFF20, the collection procedure is similar to the
one of WEB101, except that action classes of DIFF20 are
totally different from UCF101. To achieve this, we carefully
select 20 action classes from Kinetics [3] and MPII Pose



Figure 2. Action categories of DIFF20 data set.

[1]. As shown in Fig. 2, three classes are from MPII Pose
(i.e., playing broomball, playing handball, playing horn)
and others are from Kinetics. Note that, there exists the
class overlap between Kinetics and ActivityNet, e.g., play-
ing badminton and windsurfing, which we pick from Kinet-
ics, also appear in ActivityNet.

For VOC, we build it from VOC 2012 Action Dataset
[2]. It consists of 10 action categories in which 4 categories
are overlapped with UCF101 (i.e., Jumping, PlayingInstru-
ment, RidingBike, RidingHorse). To avoid ambiguity of ac-
tions from multiple targets, we crop the squared bounding
box as one image sample in our VOC. Furthermore, we ex-
clude all samples in the ’other’ class of VOC Action 2012 in
our experiments, as our main goal is to evaluate if temporal
features hallucinated from video memory can boost action
recognition with few still images.

4. More Ablation Studies

Performance Convergence. To check when the recog-
nition will saturate, we further report accuracy of WEB101

No. of Images 20 30 40 50
our TP 62.3 65.9 68.0 69.3
our SP 63.5 66.9 68.5 69.9
our HVM 63.6 67.2 68.9 70.2

Table 1. Performance convergence (WEB101). As expected, when
the number of training images increases, the accuracy of our mod-
els increases and the increasing trend is gradually flat.

Approaches WEB101 VOC DIFF20
TSNimagenet 26.4 42.9 66.3
TSNkinetics 32.8 51.4 76.6
Our HVMkinetics 34.0 51.8 78.4

Table 2. Different video memory (the most challenging 1-image
case). We use Kinetics [3] to construct our video memory, and
compare our HVM with TSN (i.e., its RGB stream, pretrained re-
spectively on ImageNet and Kinetics).

with 20 / 30 / 40 / 50 training images per category in Ta-
ble 1. As expected, when the number of training images
increases, the accuracy of our models increases and the in-
creasing trend is gradually flat.

Different Video Memory. We further construct our
video memory using Kinetics [3] and report our experimen-
tal results. Similar to the construction of UCF101, we ran-
domly select 20 videos from each category of 400 actions
in Kinetics. Then, we generate spatial and temporal fea-
tures (5b layer, 1024 dimension after global pooling) from
TSN pretrained on Kinetics, where Kinetics Val Top1 Acc
are 69.1 (RGB stream) and 62.1 (Flow stream). We per-
form HVM for 1-training-image case, and compare it with
TSN (i.e., its RGB stream, pretrained respectively on Ima-
geNet and Kinetics). As shown in Table 2, the performance
of our approach can be further improved, when using the
large-scale Kinetics as video memory.

References
[1] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d

human pose estimation: New benchmark and state of the art
analysis. In CVPR, 2014.

[2] M. Everingham, L. Gool, C. Williams, J. Winn, and A. Zisser-
man. The pascal visual object classes (voc) challenge. IJCV,
2010.

[3] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vi-
jayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, M. Su-
leyman, and A. Zisserman. The kinetics human action video
dataset. In arXiv:1705.06950, 2017.

[4] C. E. Rasmussen and C. K. I. Williams. Gaussian Process for
Machine learning. MIT Press, 2006.

[5] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus. End-to-
end memory networks. In NIPS, 2015.

[6] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and
D. Wierstra. Matching networks for one shot learning. In
NIPS, 2016.


