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This supplementary material provides additional results
supporting the claims of the main paper. First, we pro-
vide details about the mentioned adversarial training and
compare the respective results quantitatively (§I). Addi-
tionally, we compare to a more recent pre-training base-
line (§2) and provide the results when omitting the vali-
dation set for training on our novel dataset (§3)). Finally,
we show more examples from our qualitative investigation.
Specifically, we show examples for predicted views (), in-
vestigate which inputs activate the neurons in the latent rep-
resentation most (§5), and visualize the nearest neighbors in
the latent space for our novel dataset (§6)).

1. Adversarial training

In the main paper we stated that we also experimented
with an additional adversarial loss term. Here, we give some
details about the underlying intentions, the implementation
and the results of these experiments.

In our work, the objective for the decoder g is based on
the reconstruction loss. In this way, the decoder is penalized
for any deviation from the second view’s exact pixel values.
However, more important for our task is the global structure
of the image as this is affected crucially by the pose. That
is, the decoder spends representational power on estimating
exact pixel values, which are of little interest to us.

The adversarial training procedure, on the other hand, as
proposed by Goodfellow et al. [1]] corresponds to a mini-
max two-player game, where each player is implemented
by a neural network. A generator network aims to gener-
ate samples from the data distribution and a discriminator
network aims to discriminate generated samples from real
samples. In this game, the loss for the generator is essen-
tially provided by the discriminator, thus overcoming the
need for explicit supervision, e.g., from corresponding tar-
get images.

Using this idea, we can train the decoder g of our method
to match the distribution of real images, but lessen the focus
on raw pixel differences. We do so by adding an additional
adversarial term to the loss in Eq. (6) of the main paper,
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where )\, is a weighting factor and 7, is based on how “real”
the discriminator network h thinks a generated sample ¥
is. That is, since this yielded the best results, we define /,
inspired by Least Squares GAN [2] as
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where [,. is the label value for real samples. The objective
for the discriminator, on the other hand, is to push the real
samples towards [/,- and generated samples towards a distinct
label value I, i.e.,
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In our case we set [, = 1 and [; = 0. For the adversarial
part, we adopted the training procedure and discriminator
architecture of DCGAN [6].

The decoder g needs to output an image closely resem-
bling the image of the second view since the reconstruction
loss is still part of its objective. Nevertheless, g is enforced
to focus more on the overall structure of the image through
the loss term provided by the discriminator.

Additionally, the discriminator can be improved, and
thus provide better feedback, by conditioning it on addi-
tional input, as has been described, e.g., in [3]]. We can con-
dition it on the input from the first view and/or, in case of
semi-supervised training, the pose. In the semi-supervised
case, the provided pose information is the estimated pose
for generated samples and the annotated pose for real sam-
ples.



n 100

1,000 10,000

43,640

Metric (see main paper) ME FS80  JS80 ME

FS80  JS80 ME FS80  JS80 ME FS80  JS80

Semi-superv. 29.12 0.31 0.63

Semi-superv. & Adversarial  29.52 0.32 0.63 23.32

2296 044 071 2149 047 0.73 20.70 0.48 0.74
0.41  0.70

20.67 048 0.74 2023 049 074

Table 1: Comparison with additional adversarial loss on NYU-CS. Comparison of semi-supervised training with (Semi-superv. &
Adversarial) and without an additional adversarial loss (Semi-superv.) for different metrics on the NYU-CS dataset. Note, that these results
differ slightly from the results in the main paper since this comparison was based on a previous version of the code base (e.g., earlier

PyTorch version, etc.). Best results in boldface.

n 189
Metric (see main paper) ME  FS80 JS80

Semi-superv. 2727 030 0.66
Semi-superv. & Adversarial 27.79 0.32 0.65

Table 2: Comparison with additional adversarial loss on MV-
hands. Comparison of semi-supervised training with (Semi-
superv. & Adversarial) and without (Semi-superv.) an additional
adversarial loss for different metrics on the MV-hands dataset.
Best results in boldface.

In Tab. [T] and [2] we compare the results when using the
additional adversarial term to the results of semi-supervised
training without the adversarial term. We see that adversar-
ial training can improve the results slightly for larger num-
bers of labeled samples n, but not in cases where only a
small number of samples is labeled. Moreover, note that we
obtained the presented results for the adversarial training by
tuning hyper-parameters separately for different n and tak-
ing the best results. We found that, for different n, different
conditioning types and settings for A\, worked best. While
for a small number of labeled samples, n = 100, condition-
ing the discriminator solely on the input and a small weight
for the adversarial term (A, = 0.01) yielded best results,
for larger n, conditioning on the pose and a larger weight
Aa = 0.1 had a positive impact on the results.

The results point out that training our method with an
additional adversarial loss term bears potential to improve
results. However, it appears that a sufficient amount of la-
beled samples is necessary so that the discriminator can ex-
ploit the pose conditioning and provide improved feedback
for training the decoder. Additionally, it requires signifi-
cant tuning to achieve improved performance. The semi-
supervised approach, as described in the main paper, on the
other hand, does not require such extensive hyper parame-
ter tuning for different amounts of labeled data but yields
consistently improved performance due to the pose specific
latent representation.

Number of samples 100 1,000 10,000 43,640

Context Encoders [5] 53.4 53.4 53.3 53.8
Autoencoder 48.0 47.2 47.3 47.1
PreView (Ours) 334 29.6 29.0 29.0

Table 3: Comparison of different pre-training methods on the
NYU-CS dataset. Mean joint error for learning a linear layer on
top of the frozen latent representation with different numbers of
labeled samples n. Best results in boldface.

2. Additional pre-training baseline

One of the reviewers suggested that a more recent pre-
training baseline would make the paper stronger. In partic-
ular, a comparison to Context Encoders [5] was suggested.
Context Encoders are trained to do inpainting. That is, large
random contiguous parts of the input image are removed for
training and the model should learn to inpaint the missing
regions based on the context. The idea is that the model
needs to learn to recognize the objects in the context in or-
der to accomplish this task.

In Tab. 3| we compare the latent representations — pre-
trained by different methods — based on their predictabil-
ity for the pose (see main paper for details). The results
show that the representations pre-trained using Context En-
coders [J5] are even less predictive for the pose than the rep-
resentations learned by autoencoders.

One issue of the Context Encoder baseline is the “do-
main gap* between training and testing as has been dis-
cussed in [7]. That is, at training time parts of the input
are missing, while the model is applied to full images at test
time. Moreover, we believe that the main idea of Context
Encoders does not really apply to pose estimation, where
one part of the object does not necessarily contain pose in-
formation for other parts.

3. Results for Model Selection on MV-hands

In the main paper we compare the results on the MV-
hands dataset when training on all data available for train-
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(d) Prediction for different view

Figure 1: Input reconstruction vs. different view prediction. Examples for generated views from the NYU validation set. Input view (a),
reconstructions generated by the autoencoder (b), images from a different view (c), and the corresponding predictions from our method (d).
Images from (a)-(d) with same grid index are corresponding. Visually, the autoencoder’s input reconstructions resemble the input more
closely than the predictions of our method match the different view. However, the latent representation learned by our method is much

more predictive for the pose (c.f., results in main paper).

n 189

Metric (see main paper) ME  FS80 JS80
DeepPrior++ [4]] 36.56 0.17  0.54
Supervised 30.13 0.25 0.62
Semi-superv. Autoenc. 2851 0.30 0.64

Semi-superv. PreView (Ours) 28.38 0.30 0.64

Table 4: Comparison to the state-of-the-art and ablation ex-
periments. Results for different metrics on the MV-hands dataset.
Best results in boldface.

ing, i.e., using the 100 samples from the validation set for
training, and omitting any model selection like early stop-
ping or other hyperparameter optimizations. For compari-
son, in Tab. ] we provide the results when employing the
100 validation samples for model selection during training,
i.e., early stopping.

4. Predicted views

In Fig.[T]we compare output images of input reconstruc-
tion (autoencoder) and view prediction (PreView), respec-
tively. We can observe that the reconstructions of the input
are cleaner (e.g. for the fingers) than the predictions for dif-
ferent views. Obviously, reconstructing the input is an eas-
ier task than predicting a different view. More importantly,
input reconstruction can be performed without knowledge
about the pose, as the results in the main paper suggest.
Predicting different views, on the other hand, is a harder
task but reveals pose information. In Fig. 2] we show view
prediction examples on the MV-hands dataset. Altogether,
these results underline that our latent representation is pre-
dictive for the different view as well as the pose.

5. Neuron activations

To investigate what each neuron in the latent space has
learned, we search for the samples from the validation set,
which activate a single neuron most. Fig. [3] shows these
samples for each neuron. We find that many of the neu-
rons are activated most for very specific poses. That is, the
samples, which activate a neuron most, show similar poses.



o

{
"
7

'
t
L'
N

gE~

I 3
i »
-9
,t.

@& W =
- o Qe

o & & §

J
'
¥

(a) Different view (b)
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rediction for different view

Figure 2: View prediction examples on MV-hands data. Target view (a), i.e., ground truth images of the different view and the corre-
sponding predictions from our method (b). Images with same grid index are corresponding.

6. Nearest neighbors

Similar to what we show in the main paper for the NYU
dataset, in Fig. @ we show nearest neighbors for the MV-
hands dataset. That is, given a query image from the val-
idation set, we find the closest samples from the training
set according to the Euclidean distance in the learned latent
representation space. Again, the nearest neighbors in the
latent space exhibit very similar poses.
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Figure 4: Nearest neighbors in latent space. Nearest neighbors
from training set for query samples from validation set. Query
images are shown in the marked, leftmost column, the remaining
eight columns are the respective nearest neighbors.




