
7. Supplementary
7.1. Overview

This document provides more detailed quantitative and
qualitative results highlighting the strengths and limitations
of AtlasNet.

Detailed results, per category, for the autoencoder
These tables report the metro reconstruction error and the
chamfer distance error. It surprisingly shows that our method
with 25 learned parameterizations outperforms our method
with 125 learned parameterizations in 7 categories out of
13 for the metro distance, but is significantly worse on the
cellphone category, resulting in the 125 learned parameteriza-
tions approach being better on average. This is not mirrored
in the Chamfer distance.

Regularisation In the autoencoder experiment, we tried
using weight decay with different weight. The best results
were obtained without any regularization.

Limitations We describe two limitations with our ap-
proach. First, when a small number of learned parameteri-
zations are used, the network has to distort them too much
to recreate the object. This leads, when we try to recreate
a mesh, to small triangles in the learned parameterization
space being distorted and become large triangles in 3D cov-
ering undesired regions. On the other hand, as the number
of learned parameterization increases, errors in the topology
of the reconstructed mesh can be sometimes observed. In
practice, it means that the reconstructed patches overlap, or
are not stiched together.

Additional Single View Reconstruction qualitative re-
sults In this figure, we show one example of single-view
reconstruction per category and compare with the state of
the art, PointSetGen and 3D-R2N2. We consistently show
that our method produces a better reconstruction.

Additional Autoencoder qualitative results In this fig-
ure, we show one example per category of autoencoder re-
construction for the baseline and our various approaches to
reconstruct meshes, detailed in the main paper. We show
how we are able to recreate fine surfaces.

Additional Shape Correspondences qualitative results
We color each vertex of the reference object by its distance
to the gravity center of the object, and transfer these col-
ors to the inferred atlas. We then propagate them to other
objects of the same category, showing semantically mean-
ingful correspondences between them. Results for the plane

and watercraft categories are shown and generalize to all
categories.

Deformable shapes. We ran an experiment on human
shape to show that our method is also suitable for recon-
structing deformable shapes. The FAUST dataset [4] is a
collection of meshes representing several humans in different
poses. We used 250 shapes for training, and 50 for valida-
tion (without using the ground truth correspondences in any
way). In table 5, we report the reconstruction error in term
of Chamfer distance and Metro distance for our method with
25 squarred parameterizations, our methods with a sphere
parametrization, and for the baseline. We found results to be
consistent with the analysis on ShapeNet. Qualitative results
are shown in figure 14, revealing that our method leads to
qualitatively good reconstructions.

Chamfer Metro
25 patches 15.47 11.62
1 Sphere 15.78 15.22
1 Ref. Human 16.39 13.46

Table 5. 3D Reconstruction on FAUST [4]. We trained the base-
line and our method sampling the points according from 25 square
patches, and from a sphere on the human shapes from the FAUST
dataset. We report Chamfer distance (x 104) on the points and
Metro distance (x10) on the meshes.

Point cloud super-resolution AtlasNet can generate
pointclouds or meshes of arbitrary resolution simply by sam-
pling more points. Figure 8 shows qualitative results of
our approach with 25 patches generating high resolution
meshes with 122500 points. Moreover, PointNet is able to
take an arbitrary number of points as input and encodes a
minimal shape based on a subset of the input points. This is
a double-edged sword : while it allows the autoencoder to
work with varying number of input points, it also prevent it
from reconstructing very fine details, as they are not used by
PointNet and thus not present in the latent code. We show
good results using only 250 input points, despite the fact that
we train using 2500 input points which shows the capacity
of our decoder to interpolate a surface from a small number
of input points, and the flexibility of our pipeline.

Details on the comparison against HSP [13] We per-
form a quantitative comparison against an octree-based state
of the art method. AtlasNet is trained with 25 learned pa-
rameterizations on the same data as their publicly available
trained model3. 100 random samples are drawn from each
category from the test split. We evaluated the the quality of
the reconstruction using the Chamfer distance on the normal-
ized meshes, and the metro distance. In table 8, we report

3https://github.com/chaene/hsp.
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Figure 8. Super resolution. Our approach can generate meshes at arbitrary resolutions, and the pointnet encoder [25] can take pointclouds
of varying resolution as input. Given the same shape sampled at the training resolution of 2500, or 10 times less points, we generate high
resolution meshes with 122500 vertices. This can be viewed as the 3D equivalent of super-resolution on 2D pixels.

per category results. As AtlasNet was specifically trained to
optimise the chamfer distance, we outperform HSP in every
category. AtlasNet outperforms HSP in metro distance for
10 categories out of 13. List of sampled used, ans trained
model for AtlasNet are available in the github repository.

Limitations and future work Our results have limitations
that lead to many open question and perspective for future
work. First, the patches for our generated shapes are not
guaranteed to be connected (except if the surface the input
points are sampled from is already closed, as in the sphere
experiment). An open question is how to effectively stitch
the patches together to form a closed shape. Second, we have
demonstrated results on synthetic object shapes. Ideally,
we would like to extend to entire real scenes. Third, we
have optimized the parameterization of the generated meshes
post-hoc. It would be good to directly learn to generate the
surfaces with low distortion parameterizations. Fourth, this
work generates surfaces by minimizing an energy computed
from point clouds. An open question is how to define a loss
on meshes that is easy to optimize? Finally, as the atlases
provide promising correspondences across different shapes,
an interesting future direction is to leverage them for shape
recognition and segmentation.



pla. ben. cab. car cha. mon. lam. spe. fir. cou. tab. cel. wat. mean
Baseline PSR 2.71 2.12 1.98 2.24 2.68 1.78 2.58 2.29 1.03 1.90 2.66 1.15 2.46 2.12
Baseline PSR PA 1.38 1.97 1.75 2.04 2.08 1.53 2.51 2.25 1.46 1.57 2.06 1.15 1.80 1.82
Ours 1 patch 1.11 1.41 1.70 1.93 1.76 1.35 2.01 2.30 1.01 1.46 1.46 0.87 1.46 1.53
Ours 1 sphere 1.03 1.33 1.64 1.99 1.76 1.30 2.06 2.33 0.93 1.41 1.59 0.79 1.54 1.52
Ours 5 patch 0.99 1.36 1.65 1.90 1.79 1.28 2.00 2.27 0.92 1.37 1.57 0.76 1.40 1.48
Ours 25 patch 0.96 1.35 1.63 1.96 1.49 1.22 1.86 2.22 0.93 1.36 1.31 1.41 1.35 1.47
Ours 125 patch 1.01 1.30 1.58 1.90 1.36 1.29 1.95 2.29 0.85 1.38 1.34 0.76 1.37 1.41

Table 6. Auto-Encoder (per category). The mean is taken category-wise. The Metro Distance is reported, multiplied by 10. The meshes
were contructed by propagating the patch grid edges.

pla. ben. cab. car cha. mon. lam. spe. fir. cou. tab. cel. wat. mean
Baseline 1.11 1.46 1.91 1.59 1.90 2.20 3.59 3.07 0.94 1.83 1.83 1.71 1.69 1.91
Baseline + normal 1.25 1.73 2.19 1.74 2.19 2.52 3.89 3.51 0.98 2.13 2.17 1.87 1.88 2.15
Ours 1 patch 1.04 1.43 1.79 2.28 1.97 1.83 3.06 2.95 0.76 1.90 1.95 1.29 1.69 1.84
Ours 1 sphere 0.98 1.31 2.02 1.75 1.81 1.83 2.59 2.94 0.69 1.73 1.88 1.30 1.51 1.72
Ours 5 patch 0.96 1.21 1.64 1.76 1.60 1.66 2.51 2.55 0.68 1.64 1.52 1.25 1.46 1.57
Ours 25 patch 0.87 1.25 1.78 1.58 1.56 1.72 2.30 2.61 0.68 1.83 1.52 1.27 1.33 1.56
Ours 125 patch 0.86 1.15 1.76 1.56 1.55 1.69 2.26 2.55 0.59 1.69 1.47 1.31 1.23 1.51
Table 7. Auto-Encoder (per category). The mean is taken category-wise. The Chamfer Distance is reported, multiplied by 103.

pla. ben. cab. car cha. mon. lam. spe. fir. cou. tab. cel. wat. mean
metro HSP 2.82 2.65 2.18 2.41 2.88 2.47 3.30 3.39 1.86 2.84 2.83 1.71 2.52 2.61

Ours 25 patch 1.99 2.15 2.24 2.02 2.38 2.44 3.05 3.18 2.19 2.59 2.40 1.62 2.64 2.38
chamfer HSP 10.1 11.8 10.6 4.08 12.4 21.2 37.7 20.4 7.32 18.4 13.9 19.3 15.4 15.6

Ours 25 patch 2.24 3.23 6.44 2.00 4.77 7.78 9.05 9.86 3.02 4.91 4.27 6.01 4.57 5.24
Table 8. Single-view reconstruction. Quantitative comparison against HSP [13], a state of the art octree-based method. The average error
is reported, on 100 shapes from each category. The Chamfer Distance reported is computed on 104 points, and multiplied by 103. The
Metro distance is multiplied by 10.

Weight Decay Ours : 25 patches
10−3 8.57
10−4 4.84
10−5 3.42
0 1.56

Table 9. Regularization on Auto-Encoder (per category). The mean is taken category-wise. The Chamfer Distance is reported, multiplied
by 103.
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Figure 9. Single-view reconstruction comparison: From a 2D RGB image (a), 3D-R2N2 reconstructs a voxel-based 3D model (b),
PointSetGen a point cloud based 3D model (c), and our AtlasNet a triangular mesh (d).pt
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Figure 10. Autoencoder comparison: We compare the original meshes (a) to meshes obtained by running PSR (b) on the dense point cloud
sampled from our generated mesh, and to our method generating a surface from a sphere (c), and 25 (d) learnable parameterizations.pt



Figure 11. Shape correspondences: a reference watercraft (left) is colored by distance to the center, with the jet colormap. We transfer
the surface colors to the inferred atlas for the reference shape (middle). Finally, we transfer the atlas colors to other shapes (right). Notice
that we get semantically meaningful correspondences, without any supervision from the dataset on semantic information. All objects are
generated by the autoencoder, with 25 learned parametrizations.

Figure 12. Shape correspondences: a reference plane (left) is colored by distance to the center, with the jet colormap. We transfer the
surface colors to the inferred atlas for the reference shape (middle). Finally, we transfer the atlas colors to other shapes (right). Notice that
we get semantically meaningful correspondences, such as the nose and tail of the plane, and the tip of the wings, without any supervision
from the dataset on semantic information. All objects are generated by the autoencoder, with 25 learned parametrizations.



(a) Excess of distortion. Notice how, compared to the original point cloud (left), the generated pointcloud (middle) with 1 learned
parameterization is valid, but the mapping from squares to surfaces enforces too much distortion leading to error when propagating the
grid edges in 3D (right).

(b) Topological issues. Notice how, compared to the original point cloud (left), the generated pointcloud (middle) with 125 learned
parameterizations is valid, but the 125 generated surfaces overlap and are not stiched together (right).

Figure 13. Limitations. Two main artifacts are highlighted : (a) Excess of distortion when too small a number of learned parameterizations
is used, and (b) growing errors in the topology of the reconstructed mesh as the number of learned parameterization increases.

Figure 14. Deformable shapes. Our method learned on 250 shapes from the FAUST dataset to reconstructs a human in different poses.
Each color represent one of the 25 parametrizations.




