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In this supplementary material, we begin by providing

additional implementation details (Section 5) for training

our network and run-time comparisons (Section 8) for all

methods. This is followed by visualization of synthetic

noisy kernels generated using our proposed scheme (Sec-

tion 7.1), a discussion on noise-specific training experi-

ments (Section 9.1) that we have conducted to assess the

performance of the learned network with respect to vari-

ation in kernel noise level, and details on the network ar-

chitectures (Section 4.2) that we experimented with (before

converging to the one used in the main paper). This is fol-

lowed by qualitative comparisons on our proposed improvi-

sations (Section 9) for kernel noise reduction. Finally, we

discuss the generalizability of our trained network followed

by additional quantitative and qualitative comparisons.

S1. Implementation Details and Run-time

For training with real kernels, we use 400 clean images,

and 1.6K real noisy kernels (formed from 4 GT kernels as

discussed in Section 5) to generate 10K restored images.

The set of kernels and images used for generation of test

data is kept different from the ones used for generation of

training data. For the generation of training as well as test

data, we use ground truth kernels to form the corresponding

blurred images, and the noisy kernel estimates to obtain im-

age estimates. To accommodate the effects of image noise,

while generating the training data we added AWG noise (by

varying noise levels up to 2%) to the blurry images. To

form the training data corresponding to synthetic noisy ker-

nels, we used 10K blurry images formed using 10K GT ker-

nels obtained from the synthetic kernel generation scheme

in [1]. We have then used our proposed noisy kernel genera-

tion scheme to generate corresponding 10K synthetic noisy

kernels and image estimates. To form training data corre-

sponding to a mixture of synthetic and real kernels, we used

5K images each from both the real kernel based training

data as well as synthetic kernel-based training data. This

ensures that the performance variation across different cat-

egories is a true reflection of the differences in kernels used

for training data. For all the cases, we used about 1.6 million

patches for training. Patches close to the boundary were ex-

cluded since they can be information-deficient. Training of

our network was done using gray scale images. To obtain

results for color images, following others, we recombined

the restored results of each channel. We trained our net-

work on Nvidia Titan-X GPU using Torch. Table S1 lists

the run-time. For the methods in [7, 11, 18, 25] we report

the run-time using MATLAB on Intel core i5 CPU. For [9],

we report the run-time on Nvidia Titan-X GPU for their

TensorFlow implementation. For our proposed approach,

run-time for the first NBD unit was computed on Intel core

i5 CPU (for fairness in comparison with [7]) and the time

for the CNN unit was computed using Nvidia Titan-X GPU.

As is evident, the run-time for our approach is comparable

to most of the works and is significantly less as compared

to the state-of-the-art [25].

S2. Visualization of synthetic noisy kernels

As mentioned in our main paper, the noise behavior in

kernel estimates primarily depends on the type of kernel

prior employed. Typical kernel priors such as L2 or L1

norm on kernel intensity and/or gradients tends to deliver

smoothly varying kernel estimate, while suppressing iso-

lated noises which might get generated otherwise. Fig. S1

illustrates the closeness between some of the real kernels

returned by blind-deblurring methods and our synthetically

generated kernels corresponding to different parameter set-

tings. From Figs. S1(a-f), we note that the noise pat-

tern consists of smooth variations (rather than abrupt transi-

tions), and is mainly distributed around the neighborhoods

of the spatial locations where the GT kernel is non-zero.

The estimated real kernels (Figs. S1(b-f)) appear to be low-

pass filtered versions of the original kernel (Fig. S1(a)).

As is evident from Figs. S1(g-h), the synthetic noisy ker-

nels generated using our proposed scheme also mimic this

behavior. To further verify the validity of synthetic noisy

kernels we trained our network using “noisy kernels gener-

ated by directly adding AWGN to GT kernels”, “kernels ob-



Table S1. Run-time (in seconds) for NBD methods

Image size [7] [11] [5] [3] [6] [18] [9] [25] Ours

255 × 255 0.36 3.32 20.89 52.25 11.91 0.20 0.31 115.1 2.31

868 × 612 0.76 25.05 132.5 305.32 78.18 1.06 1.23 697.6 7.60

(a) (b) (c) (d) (e) (f) (g) (h)
Figure S1. (a) Ground truth blur kernels from dataset in [13]. Real kernels recovered by BD methods in (b) [4] (c [2] (d) [13] (e) [19], and

(f) [16]. Synthetically generated noisy kernels corresponding to (g) λn = 6, vg = 0.5, and (h) λn = 9, vg = 0.7.

tained using proposed scheme”, and “real kernels” (the un-

derlying GT kernels were kept the same in all three cases).

The PSNR gain (as discussed in Section 7.1) obtained using

these three different networks was found to be 0.19, 0.74,

and 0.89, underscoring the merit of proposed kernel gener-

ation.

S3. Noise level-specific training

To analyze the impact of the level of kernel noise in the

training data on network performance, we divided the ker-

nels used for training data generation into three categories:

low (N1, average error-ratio < 1.2), high (N2, 1.2 ≤ aver-

age error-ratio ≤ 1.6), and mixed (N1 + N2) noise types.

To divide the kernels into different categories we have used

error-ratio computed in the following fashion. For each ker-

nel estimate, we used a test image and corresponding GT

kernels to generate the blurry images for all the kernels un-

der consideration. These images are then deblurred using

[7] (with λ = 2e3) and the noisy kernel estimates. We re-

peat this process for a number of test images and compute

the average of the error ratio [12] for all the test images. Al-

though the error-ratio gives a measure of kernel noise nor-

malized according to the blur extent [12], we empirically

observed that it still depends on the contents of the image.

By using the same set of test images for all the kernels, we

removed the dependency on image content which in turn

yields reliable decisions on noise levels. We use multiple

test images to remove the bias of the threshold on the con-

tents of the test image. In our experiments, we used all the

images from set14 dataset of [22] as test images. We treated

kernels with error-ratio above 1.6 (emprically found) as out-

liers. We trained the network on the above-mentioned three

different categories of noisy kernels. In a similar way to the

generation of kernels for training we have also divided the

testing kernels into three categories low (N ′

1
), high (N ′

2
),

and mixed (N ′

1
+N ′

2
) noise types.

Fig. S2 illustrates performance differences of the net-

work on low (N ′

1
), high (N ′

2
), and mixed (N ′

1
+ N ′

2
) noise

categories of the test data. As is evident, when we restrict

the noise variations, performance for that specific noise

level improves but suffers at other noise levels. The per-

formance of the network trained with N1 + N2 yields the

best results when we tested on the whole data (N ′

1
+N ′

2
) in

a noise-level independent fashion. While this is true, if we

have prior knowledge of the noise level in the kernel, we

could selectively choose the best performing network for

each scenario. We call this as noise-level-dependent testing

and denote it by N1||N2. For such a case, we can further im-

prove performance on the whole data (N ′

1
+ N ′

2
) as shown

in Fig. S2. Our noise-level-dependent testing is useful in

scenarios where we can assess kernel noise level. Decipher-

ing the noise level of estimated kernel is a research problem

in itself. One way to exploit the advantage of noise-level-

dependent testing is to restore images with network for dif-

ferent noise levels and choose the one that yields the best

score based on some nonreference quality metric (such met-

rics can be found in [10]) as the optimal restoration result.
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Figure S2. Network performance against noise level.

S4. Analyzing Performance of Different Net-

work Structures

Before arriving at our final architecture, we had at-

tempted different variations, details of which are provided

here. The structure is described in the format ‘number



of filters (filter size)’ for each layer. In the following

description, the layers inside curly braces represent feature

extraction units for a single input, C refers to 64 filters,

Cq refers to 64q filters, and An represent the nth network

structure.

A1) 2 layers of feature extraction for each input (the net-

work used in the main paper). Overall network structure:

3× {C(3× 3)− C2(3× 3)} − C8(3× 3)− C8(3× 3)−
C8(3×3)−C8(3×3)−C2(3×3)−C1(3×3)−1(3×3)
A2) 3 layers of feature extraction for each input:

3× {C1(3× 3)−C2(3× 3)−C2(3× 3)} −C8(3× 3)−
C8(3×3)−C8(3×3)−C2(3×3)−C1(3×3)−1(3×3)
A3) 1 layer of feature extraction for each input:

3× {C2(3× 3)} −C8(3× 3)−C8(3× 3)−C8(3× 3)−
C8(3×3)−C8(3×3)−C2(3×3)−C1(3×3)−1(3×3)
A4) No individual feature extraction unit:

C3(3 × 3) − C6(3 × 3) − C8(3 × 3) − C8(3 × 3) −
C8(3×3)−C8(3×3)−C2(3×3)−C1(3×3)−1(3×3)
A5) 2 layers of feature extraction for each input, with larger

filter size at input layer: 3 × {C1(5 × 5) − C2(3 × 3)} −
C8(3× 3)−C8(3× 3)−C8(3× 3)−C8(3× 3)−C2(3×
3)− C1(3× 3)− 1(3× 3)
A6) 2 layers of feature extraction for each in-

put, with larger filter size at output layer:

3× {C1(3× 3)−C2(3× 3)} −C8(3× 3)−C8(3× 3)−
C8(3×3)−C8(3×3)−C2(3×3)−C1(3×3)−1(5×5)
A7) 2 layers of feature extraction for each in-

put, with one layer removed from the middle:

3× {C1(3× 3)−C2(3× 3)} −C8(3× 3)−C8(3× 3)−
C8(3× 3)− C2(3× 3)− C1(3× 3)− 1(3× 3)
A8) 2 layers of feature extraction for each input, with one

layer added at the middle: 3× {C1(3× 3)−C2(3× 3)} −
C8(3× 3)−C8(3× 3)−C8(3× 3)−C8(3× 3)−C8(3×
3)− C2(3× 3)− C1(3× 3)− 1(3× 3)

Network architectures
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Figure S3. Performance of different network architectures.

A network with no individual feature extraction unit (A4)

will discriminate the features from multiple inputs at the

first layer itself. For networks with individual feature ex-

traction units, the feature discrimination starts from the

junction of all individual feature extraction units. Fig. S3

displays the PSNR values of test data for each of these net-

works. As can be observed, the inclusion of feature extrac-

tion units (A1−A3) for each input resulted in improvement

in PSNR. However, the performance improvement begins

to narrow down when we use more than 2 feature extraction

layers. To explore the scope for performance improvement

by using filters of larger spatial extent, we increased the fil-

ter size at input and output layers, respectively (A5 − A6).

However, for both cases, increasing the filter size leads to

minor reduction in performance. The total number of layers

used had a direct bearing on the performance of the net-

work. To display this sensitivity, we compared the perfor-

mance of two networks obtained by removing and adding

one layer each, with respect to our final network (A7−A8).

As is evident, the performance is less for the network that

has one layer less. Although there exists minor improve-

ment in PSNR for network with more layers, we chose to

proceed with the architecture proposed in the main paper

as a judicious trade-off between computational complexity

and performance. Scope exists to improve the performance

with additional layers.

S5. Effect of loss function

To test the difference in performance with respect to loss

function, we trained our final network with both L2 and L1

loss. While the results from both networks were visually

comparable, the PSNR and SSIM values of the outputs were

slightly better for the network trained with L2 loss.

S6. Qualitative Comparisons on improvisa-

tions

Here we will provide qualitative comparisons on the two

improvisations which we proposed in the main paper. Ex-

amples on the effect of kernel refinement is shown in Fig.

S4. When the kernel noise is high, although our proposed

method (Fig. S4 (d)) performs much better than the com-

peting methods (Fig. S4 (b,c)), the restoration quality has

scope for improvement. Using our iterative kernel refine-

ment scheme, we could further reduce the noise level in the

kernel (Fig. S4 (e)) which in turn leads to a high-quality

restoration result. It is also evident from the final restora-

tion results that our NBD method performs remarkably well

(Fig. S4 (g)) post refinement of noisy kernel. Fig. S5 illus-

trates the impact of plugging-in our NBD module into [21].

While the BD method in [21] gets trapped in a local mini-

mum (Fig. S5 (b)) from successive accumulation of resid-

ual artifacts, our proposed BD approach ‘[21] + CNN2/3’

(whose latent image estimation arm is driven by our NBD

method) is successful in removing the artifacts thus leading

to good quality kernel estimate (Fig. S5 (e)) as well as fi-

nal restored image (Fig. S5 (g)). As is evident from Figs.

S5 (b-d), our NBD approach gives rise to better restoration



(a) (b) (c) (d) (e) (f) (g)
Figure S4. Examples on kernel refinement through iterative restoration. ‘Rows 1-2: Synthetic example from [13] (for a kernel estimate from

[2]), Rows 3-4: Real example from [10] (for a kernel estimate from [15])’. (a) Blurred image. Restored images from initial kernel estimate

using (b) [7] (and corresponding kernel estimate), (c) [25], and (d) proposed approach (CNN2/3). Restored images from refined kernel

(obtained via proposed iterative kernel refinement scheme) using (e) [7] (and corresponding kernel estimate), (f) [25], and (g) proposed

NBD method (CNN2/3).

(a) (b) (c) (d) (e) (f) (g)
Figure S5. Examples on adaptation to blind deblurring. ‘Rows 1-2: Synthetic example, Rows 3-4: Real example’ from [10]. (a) Blurred

image. Restored images obtained by using kernel estimate from [21] and NBD method of (b) [7] (and corresponding kernel estimate),

(c) [25], and (d) proposed approach (CNN2/3). Restored images obtained by using kernel estimate from proposed BD method ‘[21] +

CNN2/3’ and NBD method of (e) [7] (and corresponding kernel estimate), (f) [25], and (g) proposed NBD method (CNN2/3).

results (as compared to other NBD methods) even for high

noisy kernels, but the restoration quality is still limited by

the noise level in the input kernel. However, the noise level

reduction achieved through ‘[21] + CNN2/3’ leads to supe-

rior quality of restoration.

S7. Generalizability to other NBD methods

Note that, our core idea is ‘if regions with fewer artifacts

and high-frequency details can be provided as inputs, then it

is possible to train a CNN to yield high-quality restoration’.

Since, generation of such inputs is possible with any prior-

Table S2. Average PSNR on dataset of [13]

BD method → [4] [2] [13]

L1 → CNN2/3 30.23 30.46 30.65

CNN2/3 30.40 30.62 30.87

[25] → CNN2/3 30.69 30.83 31.02

average 28.74 29.36 29.35

median 28.91 29.34 29.47

driven NBD, our approach can be expected to work well

with initialization from other NBD methods too. However,

we need to pick different λ values if we shift to a different

NBD. To pick the λ values corresponding to a new NBD



Table S3. Performance comparison on dataset of [19] and [10]

NBD method BD method for kernel estimation

PSNR/SSIM for images from [19] SSIM/IFC for images from [10]

[2] [20] [14] [20] [21] [19] [17]

L1 → CNN2/3 29.46/0.87 32.49/0.90 30.54/0.84 0.77/2.53 0.76/2.28 0.75/2.29 0.74/2.34

CNN2/3 29.54/0.88 32.60/0.91 30.69/0.85 0.78/2.58 0.76/2.30 0.75/2.31 0.75/2.41

[25] → CNN2/3 29.61/0.88 32.75/0.91 30.81/0.85 0.79/2.62 0.77/2.36 0.75/2.34 0.75/2.43

average 28.99/0.84 30.72/0.86 29.58/0.82 0.74/2.46 0.72/2.23 0.72/2.14 0.71/2.19

median 28.61/0.83 30.46/0.86 29.35/0.81 0.73/2.42 0.73/2.25 0.71/2.11 0.71/2.17

Table S4. Average PSNR on dataset of [13], for GT kernels

NBD method → [5] [6] [3] [9] [11] [7] [18] [25] CNN2/3

PSNR 32.95 33.98 33.92 35.02 33.77 33.93 33.41 34.69 35.26

method one can use the criteria mentioned in Section 6 (i.e.,

visual inspection and observation on average error, Fig. 1

(n)). Also, the behavior of L2 prior is significantly different

as compared to others, whereas L2/3 and [25] have similar

behavior. Since our approach already works well for two

fundamentally different priors, it stands to reason that our

approach should be applicable to other NBDs.

Now we will explore the possibility of using outputs of

other NBD methods as inputs to the network trained with

[7] (i.e., CNN2/3). We used CNN2/3 but initialized with

outputs from [25] (we call it as [25] → CNN2/3) and L1

norm based restoration (L1 → CNN2/3). The optimal inputs

used for [25] → CNN2/3 are λp = 64e3, 64e4, and 64e5 (re-

fer Fig. 1), whereas we used λ1 = 1e2, 1e3, and 1e4 for L1

→ CNN2/3. Qualitative performance comparisons for [25]

→ CNN2/3 and L1 → CNN2/3 can be found in Figs. S12-

S27 and Figs. S6-S11 respectively. Tables S2,S3 contains

the reproduced values of comparisons in Tables 1,2 for [25]

→CNN2/3 and L1 → CNN2/3. As revealed by our quan-

titative and qualitative evaluations, initialization using [25]

can indeed produce better restoration quality, whereas ini-

tialization using L1 gives rise to results marginally inferior

to CNN2/3. This also indicates that the features learned by

our network do not over-fit to [7] but instead help to dis-

tinguish between natural image contents and noise artifacts.

Thus potential certainly exists to directly use CNN2/3 in

conjunction with other NBD methods without the need for

retraining. At the same time, as indicated by the perfor-

mance differences between L1 → CNN2/3, CNN2/3, and

[25] →CNN2/3, the restoration performance of the network

do depends on the quality of inputs, underscoring the fact

that there exists scope to further improve the performance

by adopting NBD approaches with better priors.

S8. Additional quantitative comparisons

With GT kernels - To analyze the performance when the

kernel is quite accurate to begin with, we compare the

PSNR values for restored images (using GT kernels) on the

dataset of [13]. As revealed in Table S4, our approach is

able to maintain the performance improvement even when

GT kernel is available.

Simple filtering operations on the network inputs - To

give more intuition on the difficulty in extracting a sharp im-

age from the 3 network inputs, we have attempted to restore

the images by applying simple schemes such as average and

median filtering. The outputs of average and median filter-

ing can be served as the baselines and can therefore help

us to understand the restoration quality that can be achieved

by such naive approaches. Tables S2,S3 contains the repro-

duced values of comparisons in Tables 1,2 for the outputs

of average and median filtering of network inputs. As is

evident, such naive schemes do not lead to satisfactory per-

formance improvement.

S9. Additional qualitative comparisons

In this section, we provide visual comparisons for a va-

riety of examples from the datasets in [12, 19, 10]. The

results shown here include synthetic and real images of a

wide range of scenes, and kernel estimates from various

blind deblurring methods. The qualitative comparison that

we present here is mainly to illustrate the wide-scope of our

proposed approach for NBD (CNN2/3) in handling different

kinds of scene content, kernel noise, deconvolution artifacts

etc. We compare the results of the proposed approach with

all the inputs of our network to visualize the variations in

the types of image artifacts that we can handle. Visual com-

parisons with respect to blurry image and kernel estimates

are provided to have an understanding of the level of blur,

and the nature of kernel noise that our approach can handle,

respectively. We also provide comparisons with respect to

ground truth image to illustrate the closeness of our result

(to ground truth) and the efficacy in preserving details. In all

the examples, the enhanced detail preservation that can be

achieved through our approach as compared to other non-

blind deblurring methods is clearly evident. We also pro-

vide some very challenging scenarios (Figs. S48, S49, S50,

S51) for which the estimated kernels are significantly noisy.

Although we are unable to remove the artifacts completely

for such cases, the results of our approach are significantly

better than those of competing methods.



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure S6. Real example: Image from dataset in [10], for a noisy kernel estimate returned by [15]. (a) Input blurred image and kernel

estimate. Restored image using (b) [7], (c) [11], (d) [5], (e) [3], (f) [6], (g) [9], (h) [25], (i) proposed approach (CNN2/3), and (j) L1 →

CNN2/3.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure S7. Real example: Image from dataset in [10], for a noisy kernel estimate returned by [2]. (a) Input blurred image and kernel

estimate. Restored image using (b) [7], (c) [5], (d) [3], (e) [11], (f) [18], (g) [9], (h) [25], (i) proposed approach (CNN2/3), and (j) L1 →

CNN2/3.



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure S8. Real example: Image from dataset in [10], for a noisy kernel estimate returned by [15]. (a) Input blurred image and kernel

estimate. Restored image using [7] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (e) [5] (f) [11], (g) [9], (h) [25], (i)

proposed approach (CNN2/3), and (j) L1 → CNN2/3.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure S9. Real example: Image from dataset in [10], for a noisy kernel estimate returned by [15]. (a) Input blurred image and kernel

estimate. Restored image using [7] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (e) [5] (f) [11], (g) [18], (h) [25], (i)

proposed approach (CNN2/3), and (j) L1 → CNN2/3.



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure S10. Real example: Image from dataset in [10], for a noisy kernel estimate returned by [17]. (a) Input blurred image and kernel

estimate. Restored image using [7] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (e) [5] (f) [11], (g) [18], (h) [25], (i)

proposed approach (CNN2/3), and (j) L1 → CNN2/3.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure S11. Real example: Image from dataset in [10], for a noisy kernel estimate returned by [20]. (a) Input blurred image and kernel

estimate. Restored image using [7] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (e) [5] (f) [11], (g) [18], (h) [25], (i)

proposed approach (CNN2/3), and (j) L1 → CNN2/3.



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure S12. Real example: Image from dataset in [10], for a noisy kernel estimate returned by [15]. (a) Input blurred image and kernel

estimate. Restored image using [7] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (e) [5], (f) [11], (g) [9], (h) [25], (i)

proposed approach (CNN2/3), and (j) [25] → CNN2/3.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure S13. Real example: Image from dataset in [10], for a noisy kernel estimate returned by [15]. (a) Input blurred image and kernel

estimate. Restored image using [7] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (e) [11], (f) [6], (g) [18], (h) [25], (i)

proposed approach (CNN2/3), and (j) [25] → CNN2/3.



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure S14. Real example: Image from dataset in [10], for a noisy kernel estimate returned by [20]. (a) Input blurred image and kernel

estimate. Restored image using [7] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (e) [5], (f) [11], (g) [18], (h) [25], (i)

proposed approach (CNN2/3), and (j) [25] → CNN2/3.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure S15. Real example: Image from dataset in [10], for a noisy kernel estimate returned by [2]. (a) Input blurred image and kernel

estimate. Restored image using [7] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (e) [5], (f) [11], (g) [6], (h) [25], (i)

proposed approach (CNN2/3), and (j) [25] → CNN2/3.



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure S16. Real example: Image from dataset in [10], for a noisy kernel estimate returned by [15]. (a) Input blurred image and kernel

estimate. Restored image using [7] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (e) [5], (f) [11], (g) [18], (h) [25], (i)

proposed approach (CNN2/3), and (j) [25] → CNN2/3.
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Figure S17. Real example: Image from dataset in [10], for a noisy kernel estimate returned by [21]. (a) Input blurred image and kernel

estimate. Restored image using [7] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (e) [5], (f) [11], (g) [18], (h) [25], (i)

proposed approach (CNN2/3), and (j) [25] → CNN2/3.
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Figure S18. Real example: Image from dataset in [10], for a noisy kernel estimate returned by [19]. (a) Input blurred image and kernel

estimate. Restored image using [7] with (b) λ = 2e2 and (c) λ = 2e3. Results from (d) [6], (e) [5], (f) [11], (g) [18], (h) [25], (i) proposed

approach (CNN2/3), and (j) [25] → CNN2/3.
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Figure S19. Real example: Image from dataset in [10], for a noisy kernel estimate returned by [20]. (a) Input blurred image and kernel

estimate. Restored image using [7] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (e) [5], (f) [11], (g) [18], (h) [25], (i)

proposed approach (CNN2/3), (j) [25] → CNN2/3.
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Figure S20. Real example: Image from dataset in [10], for a noisy kernel estimate returned by [23]. (a) Input blurred image and kernel

estimate. Restored image using [7] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (e) [5], (f) [11], (g) [18], (h) [25], (i)

proposed approach (CNN2/3), and (j) [25] → CNN2/3.
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Figure S21. Real example: Image from dataset in [10], for a noisy kernel estimate returned by [24]. (a) Input blurred image and kernel

estimate. Restored image using [7] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (e) [5], (f) [11], (g) [18], (h) [25], (i)

proposed approach (CNN2/3), and (j) [25] → CNN2/3.
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Figure S22. Real example: Image from dataset in [10], for a noisy kernel estimate returned by [21]. (a) Input blurred image and kernel

estimate. Restored image using [7] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (e) [5], (f) [11], (g) [18], (h) [25], (i)

proposed approach (CNN2/3), and (j) [25] → CNN2/3.
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Figure S23. Real example: Image from dataset in [10], for a noisy kernel estimate returned by [8]. (a) Input blurred image and kernel

estimate. Restored image using [7] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (e) [5], (f) [11], (g) [18], (h) [25], (i)

proposed approach (CNN2/3), and (j) [25] → CNN2/3.
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Figure S24. Real example: Image from dataset in [10], for a noisy kernel estimate returned by [13]. (a) Input blurred image and kernel

estimate. Restored image using [7] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (e) [5], (f) [11], (g) [18], (h) [25], (i)

proposed approach (CNN2/3), and (j) [25] → CNN2/3.
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Figure S25. Real example: Image from dataset in [10], for a noisy kernel estimate returned by [19]. (a) Input blurred image and kernel

estimate. Restored image using [7] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (e) [5], (f) [11], (g) [18], (h) [25], (i)

proposed approach (CNN2/3), and (j) [25] → CNN2/3.
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Figure S26. Real example: Image from dataset in [10], for a noisy kernel estimate returned by [13]. (a) Input blurred image and kernel

estimate. Restored image using [7] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (e) [5] (f) [11], (g) [18], (h) [25], (i)

proposed approach (CNN2/3), and (j) [25] → CNN2/3.
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Figure S27. Real example: Image from dataset in [10], for a noisy kernel estimate returned by [15]. (a) Input blurred image and kernel

estimate. Restored image using [7] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (e) [5] (f) [11], (g) [18], (h) [25], (i)

proposed approach (CNN2/3), and (j) [25] → CNN2/3.
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Figure S28. Examples from [13] dataset, for kernel estimates returned by [19, 16]. (a) Ground truth (top) and estimated kernels (bottom).

(b) Input blurred image. Restored images using (c) [7] (d) [11], (e) [18], (f) [25], and (g) proposed approach (CNN2/3).
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Figure S29. Examples from [13] dataset, for kernel estimates returned by [19]. Restored image using [7] with (a) λ = 2e2, (b) λ = 2e3,

and (c) λ = 2e4. Results from (d) [11], (e) [18], (f) [25], and (g) proposed approach (CNN2/3).
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Figure S30. Image from [19] dataset, for a noisy kernel estimate returned by [20]. (a) Input blurred image. Restored image using [7] with

(b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (f) [11], (g) [18], (h) [25], and (i) proposed approach (CNN2/3).
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Figure S31. Image from [19] dataset, for a noisy kernel estimate returned by [20]. (a) Input blurred image. Restored image using [7] with

(b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (f) [11], (g) [18], (h) [25], and (i) proposed approach (CNN2/3).
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Figure S32. Image from [19] dataset, for a noisy kernel estimate returned by [2]. (a) Input blurred image. Restored image using [7] with

(b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (f) [11], (g) [18], (h) [25], and (i) proposed approach (CNN2/3).
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Figure S33. Image from [19] dataset, for a noisy kernel estimate returned by [20]. (a) Input blurred image. Restored image using [7] with

(b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (f) [11], (g) [18], (h) [25], and (i) proposed approach (CNN2/3).
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Figure S34. Image from [19] dataset, for a noisy kernel estimate returned by [2]. (a) Input blurred image. Restored image using [7] with

(b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (f) [11], (g) [18], (h) [25], and (i) proposed approach (CNN2/3).

(a) (b) (c) (d)

(a)

(b)

(c)

(d)

(e) Patches from (a-d)

(f) (g) (h) (i)

(f)

(g)

(h)

(i)

(j) Patches from (f-i)
Figure S35. Image from [19] dataset, for a noisy kernel estimate returned by [2]. (a) Input blurred image. Restored image using [7] with

(b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (f) [11], (g) [18], (h) [25], and (i) proposed approach (CNN2/3).
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Figure S36. Image from [19] dataset, for a noisy kernel estimate returned by [14]. (a) Ground truth image. Restored image using (b) [7],

(c) [11], (e) [18], (f) [25], and (g) proposed approach (CNN2/3).
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Figure S37. Image from [19] dataset, for a noisy kernel estimate returned by [14]. (a) Ground truth image. Restored image using (b) [7],

(c) [11], (e) [18], (f) [25], and (g) proposed approach (CNN2/3).
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Figure S38. Image from [19] dataset, for a noisy kernel estimate returned by [14]. (a) Ground truth image. Restored image using (b) [7],

(c) [11], (e) [18], (f) [25], and (g) proposed approach (CNN2/3).
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Figure S39. Image from [19] dataset, for a noisy kernel estimate returned by [14]. (a) Ground truth image. Restored image using (b) [7],

(c) [11], (e) [18], (f) [25], and (g) proposed approach (CNN2/3).
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Figure S40. Image from [19] dataset, for a noisy kernel estimate returned by [14]. (a) Ground truth image. Restored image using (b) [7],

(c) [11], (e) [18], (f) [25], and (g) proposed approach (CNN2/3).

(a) (b) (c)

(a)

(b)

(c)

(d) Patches from (a-c)

(e) (f) (g)

(e)

(f)

(g)

(h) Patches from (e-g)
Figure S41. Image from [19] dataset, for a noisy kernel estimate returned by [14]. (a) Ground truth image. Restored image using (b) [7],

(c) [11], (e) [18], (f) [25], and (g) proposed approach (CNN2/3).
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Figure S42. Image from [10] dataset, for a noisy kernel estimate returned by [20]. (a) Ground truth (top) and estimated kernels (bottom).

(b) Input blurred image. Restored images using (c) [7] (d) [11], (f) [18], (g) [25], and (h) proposed approach (CNN2/3).

(a) (b) (c) (d)

(b)

(c)

(d)

(e) Patches from (b-d)

(f) (g) (h)

(f)

(g)

(h)

(i) Patches from (f-h)

Figure S43. Image from [10] dataset, for a noisy kernel estimate returned by [19]. (a) Ground truth (top) and estimated kernels (bottom).

(b) Input blurred image. Restored images using (c) [7] (d) [11], (f) [18], (g) [25], and (h) proposed approach (CNN2/3).
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Figure S44. Image from [10] dataset, for a noisy kernel estimate returned by [20]. (a) Ground truth (top) and estimated kernels (bottom).

(b) Input blurred image. Restored images using (c) [7] (d) [11], (f) [18], (g) [25], and (h) proposed approach (CNN2/3).
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Figure S45. Image from [10] dataset, for a noisy kernel estimate returned by [20]. (a) Input blurred image. Restored image using [7] with

(b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (f) [11], (g) [18], (h) [25], and (i) proposed approach (CNN2/3).
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Figure S46. Image from [10] dataset, for a noisy kernel estimate returned by [20]. (a) Input blurred image. Restored image using [7] with

(b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (f) [11], (g) [18], (h) [25], and (i) proposed approach (CNN2/3).
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Figure S47. Image from [10] dataset, for a noisy kernel estimate returned by [20]. (a) Input blurred image. Restored image using [7] with

(b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (f) [11], (g) [18], (h) [25], and (i) proposed approach (CNN2/3).
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Figure S48. Worst case scenario example 1: Image from dataset in [10], for a severely noisy kernel estimate returned by [19]. (a) Ground

truth (top) and estimated kernels (bottom). (b) Input blurred image. Restored images using (c) [7] (d) [11], (f) [18], (g) [25], and (h)

proposed approach (CNN2/3).
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Figure S49. Worst case scenario example 2: Image from dataset in [10], for a severely noisy kernel estimate returned by [20]. (a) Ground

truth (top) and estimated kernels (bottom). (b) Input blurred image. Restored images using (c) [7] (d) [11], (f) [18], (g) [25], and (h)

proposed approach (CNN2/3).
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Figure S50. Worst case scenario example 3: Image from dataset in [10], for a severely noisy kernel estimate returned by [20]. (a) Input

blurred image. Restored image using [7] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (f) [11], (g) [18], (h) [25], and (i)

proposed approach (CNN2/3).
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Figure S51. Worst case scenario example 4: Image from dataset in [10], for a severely noisy kernel estimate returned by [19]. (a) Input

blurred image. Restored image using [7] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4. Results from (f) [11], (g) [18], (h) [25], and (i)

proposed approach (CNN2/3).
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