
Lightweight Probabilistic Deep Networks
– Supplemental Material –

Jochen Gast Stefan Roth
Department of Computer Science, TU Darmstadt

In this supplemental material we derive the recipe to create uncertainty propagating layers, give additional details on the
various types of layers used in the main paper, visualize the effect of uncertainty prediction, and illustrate its benefits with
example classification and regression results.

A. Assumed Density Filtering
We now derive the necessary equations to show that our framework indeed corresponds to ADF applied to the joint

density of neural network activations. Let us briefly recall the assumptions of our main paper. The true joint density of
network activations in a deterministic network with Gaussian independent inputs is given by

p(z(0:l)) = p(z(0))

l∏
i=1

p(z(i) | z(i−1)) (22a)

with

p(z(i) | z(i−1)) = δ
[
z(i) − f (i)(z(i−1))

]
(22b)

p(z(0)) =
∏
j

N
(
z
(0)
j |xj , σ

2
n

)
. (22c)

The approximate joint density is assumed to be

q(z(0:l)) = q(z(0))

l∏
i=1

q(z(i)), q
(
z(i)
)

=
∏
j

N
(
z
(i)
j |µ

(i)
j , v

(i)
j

)
. (23)

As explained in the main paper, we initialize the first factor of our approximation by setting q(z(0)) = p(z(0)). This is
possible since we assume Gaussian input noise. Afterwards, ADF performs iterative approximations by minimizing

arg min
q̃(z(0:i))

KL(p̃(z(0:i)) ‖ q̃(z(0:i))), (24)

where the true posterior at each iteration consists of the newest factor and the previous approximating factors

p̃(z(0:i)) = p(z(i) | z(i−1))
i−1∏
j=0

q(z(j)). (25)

Updates are then performed for the consecutive iterations (or layers) i = 1, . . . , l. For the Gaussian assumption (Eq. 23), the
solution to Eq. (24) equals to matching the first-order and second-order moments of p̃(z(0:i)) and q̃(z(0:i)).

We now show that for neural network activations as modeled by Eqs. (22a) to (22c), solving Eq. (24) exactly yields our
recipe from Eqs. (9a) and (9b) of the main paper for creating uncertainty propagating layers. To show this, the following two
properties of Dirac delta distributions are quite useful:∫ ∞

−∞
δ[x− y]g(x) dx = g(y) and

∫ ∞
−∞

δ[x− y] dx = 1. (26)



Also note that we will factorize the approximate posterior by removing an activation variable zk from the distribution and
explicitly represent it as a separate factor, i.e. q(z) = q(zrk) q(zk), where q(zrk) corresponds to the joint density of all
factors excluding zk.

We continue to derive the first order moment of p̃(z(0:i)), which will be done in two steps. First, we derive the moment of
activation variables zk of all layers excluding the last layer, i.e. for zk that are an element of z(0:i−1). Afterwards, we take a
look at activation variables solely contained in the last layer, i.e. for zk elements of z(i).

For activation variables zk not contained in the last layer (i.e. part of z(0:i−1)), we have the first moment

Ep̃[zk] =

∫
Z

p̃(z(0:i))zk dz =

∫ ∞
−∞

∫
Zrk

p̃(z(0:i))zk dzrk dzk (27a)

=

∫ ∞
−∞

∫
Z

(0:i−1)
rk

∫
Z(i)

(
δ[z(i) − f (i)(z(i−1))]q(zk)q(z

(0:i−1)
rk )zk

)
dz(i) dz

(0:i−1)
rk dzk (27b)

=

∫ ∞
−∞

q(zk)zk

(∫
Z

(0:i−1)
rk

q(z
(0:i−1)
rk )

(∫
Z(i)

δ[z(i) − f (i)(z(i−1))] dz(i)
)

dz
(0:i−1)
rk

)
dzk (27c)

=

∫ ∞
−∞

q(zk)zk

(∫
Z

(0:i−1)
rk

q(z
(0:i−1)
rk ) dz

(0:i−1)
rk

)
dzk =

∫ ∞
−∞

q(zk)zk dzk = Eq(zk)[zk]. (27d)

Hence, for all layers except for the ith layer, the first moments remain unchanged after the update. For activation variables zk
solely contained in the last layer z(i), we have the first moment

Ep̃[zk] =

∫
Z

p̃(z(0:i))zk dz =

∫
Zrk

∫ ∞
−∞

p̃(z(0:i))zk dzk dzrk (28a)

=

∫
Z(0:i−1)

∫
Z

(i)
rk

∫ ∞
−∞

(
δ[z(i) − f (i)(z(i−1))]q(z(0:i−1))zk

)
dzk dz

(i)
rk dz(0:i−1) (28b)

=

∫
Z(0:i−1)

q(z(0:i−1))
(∫

Z
(i)
rk

∫ ∞
−∞

(
δ[z(i) − f (i)(z(i−1))]zk

)
dzk dz

(i)
rk

)
dz(0:i−1) (28c)

=

∫
Z(0:i−1)

q(z(0:i−1))
(∫

Z
(i)
rk

∫ ∞
−∞

(
δ[zk − f (i)k (z(i−1))]δ[z

(i)
rk − f

(i)
rk(z(i−1))]zk

)
dzk dz

(i)
rk

)
dz(0:i−1) (28d)

=

∫
Z(0:i−1)

q(z(0:i−1))
(∫ ∞
−∞

δ[zk − f (i)k (z(i−1))]zk dzk

)(∫
Z

(i)
rk

δ[z
(i)
rk − f

(i)
rk(z(i−1))] dz

(i)
rk

)
dz(0:i−1) (28e)

=

∫
Z(0:i−1)

q(z(0:i−1))f
(i)
k (z(i−1)) dz(0:i−1) =

∫
Z(i−1)

q(z(i−1))f
(i)
k (z(i−1)) dz(i−1) = Eq(i−1) [f

(i)
k (z(i−1))], (28f)

which exactly corresponds to our recipe in Eq. (9a). Note that by replacing zk with z2k in the derivations above, it is easy to
obtain similar results for the second order moments:

∀zk elements of z(0:i−1) : Ep̃[z2k] = Eq(zk)[z
2
k] (29a)

∀zk elements of z(i) : Ep̃[z2k] = Eq(i−1) [f2k (z(i−1))], (29b)

which yields the variance update of the recipe Eq. (9b).

B. Uncertainty Propagation Layers
We now describe the details of various layer implementations. Recall the general recipe as given in the main paper, which
we just derived as

µ(i)
z = Eq(z(i−1))

[
f (i)(z(i−1);θ(i))

]
(30a)

v(i)
z = Vq(z(i−1))

[
f (i)(z(i−1);θ(i))

]
. (30b)



Linear layers. As explained in the main paper, fully connected layers, convolutions, and deconvolutions can all be formalized
as linear functions

z(i) = Wz(i−1) + b. (31)

By the linearity of the expectation, the uncertainty propagation layer is consequently given by

µ(i)
z = Wµ(i−1)

z + b (32a)

v(i)
z = (W ◦W )v(i−1)

z . (32b)

(Global) average pooling. The uncertainty propagation layer for average pooling

z(i) = mean
(
z(i−1)

)
(33)

can be derived by formalizing it as a linear layer, where weights are chosen such that they correspond to the averaging
operator. In practice, we can implement the layer via the following equations:

µ(i)
z = mean(µ(i−1)

z ) (34a)

v(i)z =
1

n
mean(v(i−1)

z ), (34b)

where for Eq. (34b) we rely on the fact that the mean operator itself already multiplies 1/n to the variances. Here, n is the
number of elements of z(i−1). Also note that n differs w.r.t. different pooling sizes.

Max pooling. A max pooling unit can be understood as returning the maximum response of a number of inputs, i.e. for two
inputs A and B we have

C = max(A,B). (35)

For A∼N (µA, σ
2
A) and B∼N (µB , σ

2
B) the probability density of their maximum C according to [23]is given by

p(C = c) =N (c |µA, σ
2
A) · Φ

(
c− µB

σB

)
+N (c |µB , σ

2
B) · Φ

(
c− µA

σA

)
, (36a)

where

Φ(y) =

∫ y

−∞
φ(x) dx and φ(y) =

1√
2π

exp(−y2/2) (36b)

are the CDF and PDF of a unit-normal distribution.
Despite C not being normally distributed anymore, we approximate it by a univariate normal. In [23] the first and second

moment are derived analytically. The mean is given by

µC =
√
σ2
A + σ2

B · φ(α) + (µA − µB) · Φ(α) + µB with α =
µA − µB√
σ2
A + σ2

B

(37a)

and the variance can be written as

vC = (µA + µB)
√
σ2
A + σ2

B · φ(α) + (µ2
A + σ2

A) · Φ(α) + (µ2
B + σ2

B) ·
(
1− Φ(α)

)
− µ2

C . (37b)

If we have more than two inputs, we concatenate the operations. More precisely, we fold any max pooling operation first in
horizontal and then in vertical direction.

Rectified linear unit (ReLU). c.f . main paper.

Leaky rectifier (LeakyReLU). c.f . main paper.



-8 -6 -4 -2 0 2 4 6
Differential entropy of predicted distribution

0

5

10

15

20

25

A
v
g
 e

n
d
p
o
in

t 
e
rr

o
r

Distribution of endpoint error FlowNetADF

Figure 5. Assessment of predicted regression uncertainties for an application in optical flow: Differential entropy of the predictive
distribution (x-axis) vs. average endpoint error (y-axis). A high entropy corresponds to a prediction with high variance. In this region the
endpoint error is also large, suggesting that the uncertainty of the prediction is highly correlated to the actual error.

C. Calibration of Regression Uncertainties
Similar to the comparison of cross entropy vs. categorical entropy for classification in the main paper, we can assess the

quality of the predictive distributions of our probabilistic optical flow networks in the case of regression. As already pointed
out in the main paper, our predicted uncertainties are well correlated with the actual endpoint error, which suggests that our
probabilistic approach is able to assess where it fails and where it succeeds. This is also borne out in Fig. 5, where we plot the
endpoint error for FlowNetADF against the differential entropy for all images in the FlyingChairs test set. Hence, predicted
variances can be reliably used to assess a model’s accuracy.

D. Exponential Power Outputs

(a) Big (equal) variances (b) Small (equal) variances (c) Small (differing) variances

Figure 6. Exponential power units for optical flow regression in FlowNetADF and FlowNetProbOut. In this (artificial) illustrative
example, the mean prediction is zero. (a) and (b) correspond to high and low variance predictions in which the variances of horizontal
and vertical flow are equal, respectively. (c) shows the density for a case, where horizontal and vertical variances differ by an order of
magnitude.

To gain some intuition on the workings of the probabilistic prediction, Fig. 6 shows a visualization of the probability
density of the predictive distribution at an output node for the two-dimensional exponential power unit we used in the FlowNet
networks of the main paper. The x-y axes correspond to u-v components of the optical flow. Fig. 6a shows the density of
an uncertain prediction with large variance. Fig. 6b instead shows a (more) certain prediction with a smaller variance. In
both cases, the variances for the horizontal and vertical flow directions are equal, respectively. Fig. 6c also corresponds to
a smaller variance, however, here variances in horizontal and vertical direction differ by an order of magnitude. Note that
unlike in a Gaussian output, the flow components in horizontal and vertical direction are not independent.

E. Additional Examples
Figs. 7 and 8 shows some examples from the CIFAR10 test set to illustrate how softmax predictions differ from predictions

made with our lightweight probabilistic networks. Note that for our networks we extract the categorical distribution from
the mean of the Dirichlet. While softmax predictions tend to be very confident in most cases, i.e. predictions have very low
entropy with much of the probability mass concentrated on a single category, predictions made with the Dirichlet output layer
rarely collapse to a single class in practice. Also, the predictions tend to have higher entropy, i.e. a more uniform distribution
over classes, when the network makes an incorrect prediction. In other words our lightweight probabilistic networks have a
sense of when they fail.

Figs. 11 and 12 give additional results for optical flow prediction on the Sintel dataset.



Figure 7. Correctly classified CIFAR10 images (test set). Blue bars indicate results from our ADF network with Dirichlet outputs (Dir
+ CLLH), while red bars indicate deterministic results with a softmax. Overall, the softmax results tend to be much more confident than
the Dirichlet output layer, i.e. they often yield peaky predictions with very low entropy. While the Dirichlet output layer also assigns the
correct Top-1 class, its predictions do not tend to be quite as confident as the softmax predictions, i.e. yielding higher entropy predictions.

Figure 8. Missclassified CIFAR10 images (test set). Color coding as above. Although the predictions are incorrect, the deterministic
softmax predictions are still highly confident (cf. frog top left, airplane bottom right). The Dirichlet layer also fails on these cases, yet its
predictions are less confident and have higher entropy.



Figure 9. Failure cases for Dirichlet layer. Color coding as before. Here, the softmax predicts the correct classes, while the Dirichlet
layer fails. However, in many cases the Dirichlet yields highly uncertain, i.e. high entropy, predictions.

Figure 10. Failure cases for softmax. Color coding as before. Here, the softmax fails, while the Dirichlet layer succeeds. Note how
confident softmax predictions tend to be, despite predicting the wrong class (c.f . airplanes top right).



(a
)I

np
ut

s
+

G
T

(b
)P

re
di

ct
ed

m
ea

n
(c

)P
re

di
ct

ed
un

ce
rt

ai
nt

y
(d

)E
m

pi
ri

ca
lE

PE

Fi
gu

re
11

.
Pr

ob
ab

ili
st

ic
re

gr
es

si
on

of
op

tic
al

flo
w

on
Si

nt
el

im
ag

es
.

O
ur

lig
ht

w
ei

gh
tp

ro
ba

bi
lis

tic
C

N
N

s,
Fl

ow
N

et
A

D
F

(t
op

of
ea

ch
bl

oc
k)

an
d

Fl
ow

N
et

Pr
ob

O
ut

(b
ot

to
m

of
ea

ch
bl

oc
k)

,y
ie

ld
un

ce
rt

ai
nt

ie
s

fo
rp

re
di

ct
io

ns
w

hi
le

st
ay

in
g

co
m

pe
tit

iv
e

w
.r.

t.
th

e
en

dp
oi

nt
er

ro
r(

E
PE

).
T

he
un

ce
rt

ai
nt

ie
s

ar
e

vi
si

bl
y

co
rr

el
at

ed
w

ith
th

e
E

PE
.



(a
)I

np
ut

s
+

G
T

(b
)P

re
di

ct
ed

m
ea

n
(c

)P
re

di
ct

ed
un

ce
rt

ai
nt

y
(d

)E
m

pi
ri

ca
lE

PE

Fi
gu

re
12

.
Pr

ob
ab

ili
st

ic
re

gr
es

si
on

of
op

tic
al

flo
w

on
Si

nt
el

im
ag

es
.

O
ur

lig
ht

w
ei

gh
tp

ro
ba

bi
lis

tic
C

N
N

s,
Fl

ow
N

et
A

D
F

(t
op

of
ea

ch
bl

oc
k)

an
d

Fl
ow

N
et

Pr
ob

O
ut

(b
ot

to
m

of
ea

ch
bl

oc
k)

,y
ie

ld
un

ce
rt

ai
nt

ie
s

fo
rp

re
di

ct
io

ns
w

hi
le

st
ay

in
g

co
m

pe
tit

iv
e

w
.r.

t.
th

e
en

dp
oi

nt
er

ro
r(

E
PE

).
T

he
un

ce
rt

ai
nt

ie
s

ar
e

vi
si

bl
y

co
rr

el
at

ed
w

ith
th

e
E

PE
.


