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The contents of this supplementary material are arranged
as follows. (i) illustration of the main components involved
in our image formation model, (ii) additional details on our
theoretical findings and algorithm implementation, (iii) a
comprehensive listing of the main steps involved in our rec-
tification algorithm, and (iv) additional visual comparisons
on both synthetic and real examples. In this supplementary
material, numbers of equations and sections without ‘S’ are
with respect to our main paper.

S1. Image formation model revisited

In Fig. S1, the main components of our proposed image
formation model are illustrated with the help of a toy ex-
ample. Here, we have simulated the image formation pro-
cess of a three layer-scene and explain the differences be-
tween the captured images using an RS and a GS camera
while undergoing translational motion. The first row con-
tains the elementary units (latent intensities and masks for
all the layers) which are used to represent the latent image
of a scene. Second and third rows show the layer-wise mo-
tion involved in the image formation, if we were to capture
the scene from a moving GS camera (i.e., the image forma-
tion in Eq. 5). Since all the sensors in a GS camera get
exposed to the scene at the same time, an image captured
by a moving GS camera can be treated as equivalent to that
of an image captured using a single camera pose. In order
to generate the image for a given camera pose, we need to
warp each layer using a layer-specific homography (Eq. 7)
which is again a function of the plane parameters as well
as the new camera pose ϑ. It can be observed in Fig. S1
that the pixels from each layer that are visible in the cap-
tured image (i.e., pixels that are not occluded FG layers) are
decided by the occluded layer masks.

For the case of an RS camera, different rows in the
captured image can correspond to different camera poses.
Therefore, the homography experienced by a row can po-
tentially be different as compared to another row even if
both rows come from the same layer. As shown in the
fourth and fifth row of Fig. S1, the RS effect induces depth-

dependent geometric distortions (e.g., the vertical lines in
the scene get slanted more for the layers closer to the cam-
era) and self-occlusions (since the pixels that are visible in
the image captured by a GS camera are not fully visible in
the RS image) in the captured images.

S2. Algorithmic details
S2.1. Camera motion estimation and depth recov-

ery

Optimization in Eq. 10 performs an outlier-robust esti-
mation of camera motion and plane parameters, wherein the
second term is an outlier robust cost. In each iteration, the
outlier robust cost ensures that the optimization is not neg-
atively influenced by correspondences from non-dominant
layers. In each step, this optimization by default will clas-
sify the correspondences to two classes. The first class will
correspond to the most dominant layer while all other corre-
spondences goes to the second class. This leads to a robust
estimation of plane parameters in each step, irrespective of
the proportion of correspondences in each layer. Also, in
our formulation, depth variations within a plane are already
factored in. More specifically, the depth-variations induced
by inclined planes are subsumed by the plane parameters
(normal (n) and perpendicular distance (d)).

S2.2. Iterative graph cut and visibility map

Due to space constraints, we provided only a brief dis-
cussion on the iterative refinement of occluded layer mask
in Section 3.2.1. We will now provide a detailed discussion
of our approach for iterative refinement of pixel labeling
and visibility map. In the first iteration, to solve Eq. 12,
we assign visibility map as 1 for all the pixels, and assign a
small scalar value as the cost to o. Thus the solution of Eq.
12 automatically maps the low-confident candidate pixels to
label o (which represents the pixels whose label cannot be
assigned with high confidence). Since the occluded pixels
will have a high cost for all the labels, they get classified
under o. The estimate for α̃ir,m returned by Eq. 12 is then
used to compute a refined visibility map using Eq. 16. The
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Figure S1. Layered model of 3D scenes. An example for a scene with 3 layers (with depth ordering d0 < d1 < d2) illustrating the image
formation in an RS camera. The first row represents the latent layer intensities and masks that we have used to synthesize the RS image r
and latent (or GS) image g. Second and third row simulate the warp effects on the layer intensities and masks in a GS camera. Fourth and
fifth row illustrate the warp effects associated with an RS camera. For each case, we show the warped forms of layer intensities, masks,
and finally the occluded layer masks. The occluded layer masks decide the visible pixels in the image plane, which when combined with
the RS distorted layer intensities generates the captured GS/RS image. It can be observed that, the RS image contains depth-dependent
geometrical distortions where the distortion experienced by the layer close to the camera (f2, α2) is more severe as compared to BG layers.

refined visibility map helps to reduce the effect of outliers
(generated due to occlusion effects) in the cost assignment.
The visibility map obtained from the first iteration is then
used to update the data cost used in Eq. 12. Also, since the
pixels that have labels other than o were assigned with high
confidence, we do not want to make any changes to these
labels. Hence we freeze these pixel labels and then re-do
the label assignment for the remaining pixels with the up-
dated data cost. The updating process of both the visibility
mask and data cost along with progressive freezing of high-
confidence assignments is continued until convergence. In
each iteration, we will also increase the occlusion cost to
ensure efficient convergence of the entire optimization. In
our implementation, we begin by assigning the occlusion
cost as 5 and then in each iteration we increase it by a factor
of 1.2.

Figs. S3(d-g) show the improvement in the label assign-
ments (for an image sequence from our dataset S2) as it-
eration progresses. In each image shown in Figs. S3(d-g),
the white pixels correspond to the label o, and other labels
are displayed with lower gray values, with the pixel value

for BG label being zero. It can be observed that the iterative
refinement allows us to handle the negative influences of oc-
clusion effects in label assignment and the mask estimation
converges to the desired solution after few iterations.

S2.3. Regularization for fractional mask recovery

As we explained in Section 3.2.2, when there exists sig-
nificant translational motion of the camera, portions of the
occluded regions in one input image will be visible in some
other images. We have exploited this possibility to find the
background layer intensity values ξ(u) for the pixels in the
uncertain region of the trimap. To find the values of ξ(u) we
use the following procedure. For each uncertain pixel (say
u) in ri, we identify the lower most layer (say l′) among
the two layers it can belong to. Now, layer l′ represents
the background layer and we are looking for the pixel in-
tensities from layer l′ at u. For each layer (say l) and input
image ri, we generate a binary mask Ψi

r,l with ones over the
region which will surely enclose all the pixels that belong
to l. Ψi

r,l is generated by assigning the uncertain regions in
trimap %′ to 1. The visible pixels from l′ in other images
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Figure S2. Synthetic experiment: Importance of the proposed regularization for the recovery of fractional layer mask. (a) Reference input
image. (b) Occluded layer mask of reference frame obtained through iterative graph cut. For the foremost layer, (c) selected confusion
region and (d) generated trimap for mask refinement through alpha matting. (e) Background layer estimate (obtained from neighboring
frames) for the regularization of alpha matting. Fractional layer mask obtained through (f) direct alpha matting in [2] and (g) our regularized
(using background layer estimate in (e)) alpha matting. Rectified image with mask estimate from (h) direct alpha matting ([2]) and (i)
regularized alpha matting. (j) Ground truth latent image. (k-o) Zoomed in patches from (f-j).

are then combined to yield the true intensity value ξ(u) at
u. Visible pixels from l′ can be found by inspecting the
regions in other images that get excluded by the occlusion
maps (obtained by applying Eq. 17 on Ψi

r,l) of all the layers
l which can potentially occlude the layer l′ (i.e., ∀ l > l′).
This process is repeated to identify the true intensity values
corresponding to all uncertain pixels in ri.

An example to reveal the importance of our proposed
regularization scheme is shown in Fig. S2. Fig. S2(c) shows
the uncertain region corresponding to the foremost layer
over which we intend to refine the mask values. For the
fractional layer mask recovery, we use the trimap shown in
Fig. S2(d), and the background layer intensity (Fig. S2(e))
obtained from neighboring frames. To highlight the impor-
tance of regularization, we show the fractional masks re-
trieved with and without regularization in Figs. S2(f-g). It
can be observed from the zoomed-in portions shown in Figs.
S2(k-l) that our proposed regularization helps to mitigate
the errors that generated by the direct use of the approach
in [2]. Figs. S2(h-i) show the restored images obtained by
using the alpha matte obtained from [2] and our proposed
approach, respectively. By comparing with the ground truth
image in Fig. S2(j) it can be seen that the error present in the
alpha matte obtained from [2] creates visible artifacts along
the layer boundaries, whereas the alpha matte obtained us-
ing our regularization scheme results in visually pleasing
outputs devoid of such artifacts.

S2.4. Additional implementation details

In our experiments, among all the input images ri|νi=1,
we choose the middle frame (say e) as the reference RS im-
age. While estimating the camera motion using Eq. 10 we
define the camera pose (pe1) corresponding to the first row
of re as the origin of camera trajectory. The camera motion
obtained by enforcing such a condition results in a latent
image corresponding to the camera pose pe1. For the op-
timization in Eq. 10, the first row of all the input images
are always considered as key-rows. For the cases with the
camera motion involving significant translations, we apply
RANSAC on all the point correspondences to find the most
dominant translational shift and use it to initialize the trans-
lational pose vectors for the first row (all other dimensions
of these pose vectors are initialized to 0) of every frame ex-
cept the reference frame. The camera pose at every other
key-row is initialized by values obtained through interpola-
tion with respect to the initial pose vectors at the first rows
of subsequent frames.

The optimization problems in Eq. 10 and Eq. 18 are
solved using MATLAB functions lsqnonlin and mldivide re-
spectively. We have used empirically found values of nk,
γo, k, µt, λs, λ1, λ2, λ3, λf in our experiments. For real ex-
periments, the value of focal length (q) was set to 2929.64
pixels (obtained via camera pre-calibration). To build W i

r ,
the camera pose of each row is obtained by interpolating
from adjacent key-rows (as discussed in Section. 3.1). The



Algorithm 1 Occlusion-aware RS image rectification
Input: Set of RS distorted frames {Ri}νi=1.
Output: Camera pose trajectory (p), plane parameters (nl,

dl|L−1l=1 ), layer masks (αl|L−1l=1 ), layer intensity images
(fl|L−1l=0 ), and latent image (f).

1: Compute optical flow across all consecutive frames.
Find the camera motion and plane parameters (and true
layer correspondences) of the dominant layer by setting
number of layers in Eq. 10 to 1.

2: Using the estimated camera motion and remaining op-
tical flow correspondences, solve Eq. 10 in an iterative
fashion to find the number of layers as well as the plane
parameters and the set of true layer correspondences for
other layers.

3: Use estimates from previous steps as initialization to
refine the estimates on p, nl, and dl|L−1l=1 by solving the
joint-optimization in Eq. 10.

4: Estimate occluded binary layer masks α̃ir,l|L−1l=1 by
solving Eq. 12.

5: Estimate occluded factional layer masks %̃ir,l|L−1l=1 by
solving Eq. 18 .

6: Estimate latent layer intensity images fl|L−1l=0 by solving
Eq. 21.

7: Combine warped instances of %̃ir,l|L−1l=1 according to Eq.
22 to yield latent layer masks αl|L−1l=1 .

8: Find the rectified image f using Eq. 4.

key-rows were spaced equal distance apart and we used 4
key-rows/frame in our experiments. As we discussed in
Section 3.1, the iterative identification of plane parameters
is repeated until it is impossible to identify sufficient num-
ber of true correspondences for a unique layer, wherein the
sufficient number was set to 5% of all available correspon-
dences in our experiments. While solving Eq. 10 we use the
outlier correspondence cost (i.e., γo) as a fixed scalar value
of 2. While solving Eq. 12, we use k = 0.4, µt as a thresh-
old derived based on the statistics of the overall gradients
in the image, and the labels β were assigned with values in
the range [1, L+1]. Erosion and dilation operations used in
fractional layer mask recovery are done typically by 5 pixels
each. For the implementation of various optimization prob-
lems in our work we set the parameter values as λs = 3,
λ1 = 2, λ2 = 100, λ3 = 5, and λf = 0.1. We have used
Sobel operator to find the gradients in Eq. 14 and Eq. 21.

To compare the performance with [1, 5] we have used
our own implementation of their algorithm (since the code
was not available). For [4, 3] we have used the code pro-
vided by the authors, and for [6] we used the results sent by
the authors upon request. For the generation of the dataset
corresponding to synthetic experiments, we have manually
created masks of different shapes to use as spatial support
for FG layers. To simulate a scene with L layers, we ran-

domly select L Images from [18] and L− 1 masks to form
latent layer intensity images and latent layer masks (an ex-
ample is shown in the first row of Fig. S1). A random
number generator was used to find the depth, and normal
corresponding to each layer. Random third-degree polyno-
mials were used to generate synthetic camera trajectories.
We then followed our layered-image formation (as pointed
out in Section S1) to generate the synthetic images.
Efficiency: Our unoptimized implementation in MATLAB
on an Intel Core i5 CPU takes around 215 seconds to run
the entire algorithm for a 3 layer scene with input images
of resolution 700 × 400, wherein the individual units for
camera motion estimation, occluded layer mask estimation
using graph cut, fractional layer mask recovery using alpha
matting, estimation of latent layer intensities, and final rec-
tification consumes about 126, 42, 35, 11, and 0.6 seconds
respectively.

S3. Overall Algorithm
The main steps involved in our rectification pipeline are

listed in Algorithm 1. In Fig. S3 we show few represen-
tative intermediate results obtained during rectification of a
synthetic example, which provides more clarity on the role
of each step in our algorithm. The three middle frames
among all the input images used in this experiment are
shown in Figs. S3(a-c). The iterative refinement of the oc-
cluded layer mask corresponding to the reference frame in
Fig. S3(b) is illustrated through Figs. S3(d-g). We repeat
this process to find the occluded layer masks for all three
input images. At the end of occluded layer mask estima-
tion we have the binary mask associated with the visible
pixels for all the layers in all three input images. These bi-
nary masks are used to generate the trimap, which is then
provided as input to the fractional occluded layer mask es-
timation unit. The trimap corresponding to the foremost
layer of the reference frame is shown in Fig. S3(i), Fig.
S3(j) shows the background layer intensities at the uncer-
tain regions of the trimap which we use for regularization
of fractional mask estimation. Fig. S3(j) shows the recov-
ered fractional layer mask.

The processing steps involved in the aggregation of
masks and intensities from multiple images are shown in
Figs. S3(l-r). Figs. S3(l-n) include the fractional mask esti-
mates corresponding to the middle layer of the input images
in Figs. S3(a-c), which are then re-warped to the latent im-
age coordinates and combined to yield the full layer mask
estimate of the middle layer (Fig. S3(o)). The latent layer
intensities of all the layers obtained by solving Eq. 21 are
shown in Fig. S3(i). It should be noted that, we can recover
the background layer intensities only for those positions for
which the pixels are visible in atleast one of the input im-
ages. Recovered latent image and the ground truth image
are shown in Fig. S3(s) and Fig. S3(t), respectively. A care-



ful inspection around the layer boundaries of the recovered
latent image in Fig. S3(t) reveals the presence of holes at
some locations. These holes corresponds to the pixels in
the latent coordinates that are not visible in any of the input
images.

S4. Additional quantitative comparisons
To quantitatively compare the performance in terms of

the camera motion parameters, we report (in Table S1) the
values of root mean squared error of translations (Et, in
pixels), and average geodesic distance of rotations (Er in
degrees) obtained over the synthetic datasets S1 and S2.

Table S1. Motion error on datasets S1 and S2

Dataset S1 Dataset S2

Method Et Er Et Er
[1] 0.72 0.17 6.31 1.20
[5] 0.55 0.14 5.95 1.31
[4] 2.70 0.41 8.05 2.15
[3] 2.34 0.36 6.89 1.92

Ours 0.33 0.14 0.47 0.16

For quantitative comparison with [6], we have used 5 im-
ages from our synthetic data-set S2 for which the the au-
thors of [6] provide us with the rectified images and motion
estimates. Comparisons for those 5 images are provided in
Table S2.
Table S2. Quantitative evaluation on 5 images from dataset S2

Method Et Er PSNR
[6] 2.41 0.92 25.70

Ours 0.51 0.18 29.53

S5. Additional qualitative comparisons
In this section, we provide many more visual compar-

isons of our rectification algorithm using both synthetic and
real examples. Comparisons for three synthetic examples
are shown in Fig. S4, where the input RS images are gener-
ated to simulate scenes containing two (third row) and three
layers (first and second row). While the camera motion for
the example in the first row contains dominant translations,
the second and third rows contain both camera translations
and rotations. Our method integrates information from mul-
tiple images to fill in the holes in those regions where the in-
formation in the latent image is not visible in the reference
input image. In contrast, existing methods do not account
for the occlusion effects, and hence attempt to recover the
latent image solely from a single RS image, leading to sig-
nificant errors in terms of latent image restoration. Also,
since existing methods do not account for depth and occlu-
sion dependencies, the camera motion estimation itself goes
wrong. Consequently, the RS distortions are prevalent in all
the layers of the rectified images too. It can be observed
that, in few cases, since the background layer is dominant,

existing methods end up giving a camera motion estimate
close to that of the background layer, resulting in partial
rectification of background layer alone.

Similar observations can be found from our real exam-
ples in Fig. S5 too, wherein the first two columns corre-
spond to two layer scenes and the third column comprises a
three-layer scene. Interestingly, while attempting to rectify
the examples in the first and third column of Fig. S5, the
single image based methods ([4],[3]) introduces curvature
distortions in the rectified images.

In Fig. S6, we have shown results of real examples corre-
sponding to the same scene, but with different kinds of cam-
era motion. As can be observed, the first two columns con-
tain images containing RS distortions induced by dominant-
translations, whereas the last two columns contain images
captured using dominant in-plane rotations (resulting in cur-
vature distortion in the captured images). For the cases
of camera-motion involving dominant translations, existing
multi-image based methods ([1, 5]) have partially captured
the background motion, whereas the single-image based
method in [4] induces undesired curvature distortions. In
the absence of depth-dependent distortions (third column of
Fig. S6), multi-image based methods deliver accurate recti-
fication results. While the single image based method in [4]
fails to rectify, [3] retains minor distortion in the rectified
image. In all the examples, our proposed approach is able
to deliver accurate rectification results.

Visual comparisons for the case of camera motion in-
volving dominant rotations are provided in Fig. S7. All
input images used in Fig. S7 were taken from the dataset
provided by [6]. Examples in Fig. S7 indicate that when
the depth-dependent RS distortions are absent, multi-image
based methods (including ours) are able to deliver accu-
rate results, whereas the performance of single image based
methods depends on the nature of the scene. While both sin-
gle image based methods ([4],[3]) perform well when there
exist sufficient number of straight lines in the scene (Fig.
S5, first and third row), their rectification fails completely
for other scenarios.

To conclude, the performance of existing single image
based methods depends on the nature of the scene, since
they are designed to work well only for specific classes
such as images of urban scenes containing many straight
lines ([4, 3]), or face images ([3]) etc. Existing multi-image
based methods ([1, 5]) are quite successful in doing recti-
fication for the cases involving no depth-dependent distor-
tions. While none of these methods is successful in remov-
ing depth-dependent distortions, our proposed approach can
handle the cases of both depth-dependent RS distortions as
well as occlusion effects.
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Figure S3. Detailed illustration of all the main steps involved in our RS rectification method. Synthetic example of a three layer scene.
(a-c) Input images. Occluded layer mask recovery (for the reference image in (b)) through iterative graph cut: Label assignment after (d)
1st iteration, (e) 3rd iteration, (f) 6th iteration, and (g) 11th iteration. Recovering fractional layer mask: (h) Binary layer mask (of the
fore-most layer) obtained through graph cut, (i) trimap with non-binary value at confusion region, (j) background layer intensity obtained
from neighboring frames for regularization of alpha-matte estimation, and (k) recovered fractional layer mask. Results on the full layer
mask recovery of the middle layer: (l-n) Estimated occluded fractional layer masks for RS images in (a-c) and (o) recovered latent full
layer mask. Latent layer intensity recovery results for all the layers: (p) middle layer, (q) background layer, and (r) foreground layer. (s)
Final rectified image. (t) Ground truth image.
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Figure S4. Synthetic examples: scenes with three (first and second column) and two layers (third column).
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Figure S5. Real examples for scenes containing two (first and second column) and three layers (third column).
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Figure S6. Real examples of a scene containing two layers, for different kinds of camera motion. Camera motion involving dominant
translations from left to right (first column), dominant translations from right to left (second column), dominant in-plane rotations (i.e. no
depth-dependent distortions) in anti-clockwise direction (third column), and dominant in-plane rotations (i.e. no depth-dependent distor-
tions) in the clockwise direction (fourth column). For all the examples shown above, the input image shown in the first row is used as the
reference frame.
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Figure S7. Real examples from [6] with camera motion involving dominant rotations (i.e. no depth dependent distortions).
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