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These supplementary materials include additional details
in network architecture (§1) and training (§2), as well as
extended figures and tables: §3 and §4 introduce extensions
of Figure 5 and Table 1 in the main paper, respectively.

1. Network architectures

In Figure 1, Figure 2 and Figure 3, we present three ar-
chitectures respectively for the Encoder of Landmark Gen-
erator GL, the landmark Auto-encoder (for pre-training the
AEDec) and the Head Generator GH .

In Figure 3, we should note that the output of the deep
network is the intact image (256x256x3) including the body
and head. It is then post-processed by cropping and pasting
based on the head mask and the blackhead image. There-
fore, in the final output only the head region is generated.

2. Implementation details

Both the landmark generator and head generator are
trained with the Adam optimizer [1] with the weights
λL = 2 (in the main paper Equation (3)) and λH = 50 (in
the main paper Equation (5)). Initial learning rates (for both
generator and discriminator) are 2× 10−5, and it decays to
half every 5, 000 iterations.

For landmark generation models, the minibatch size of
landmark generation models is set to 16; optimization stops
after 10, 000 iterations; each iteration consists of 5 and 1
parameter updates for the generator and the discriminator,
respectively. We have 34, 383 training data in total. There-
fore, it is about 23.3 epoches for training the generator and
4.7 epoches for training the discriminator. For AEDec, we
train the landmark Auto-encoder with the minibatch size 16;
optimization stops after 60, 000 iterations.

∗Equal contribution.

For head generation models, the minibatch size of land-
mark generation models is set to 6; optimization stops after
13, 000 iterations; each iteration consists of 5 and 1 param-
eter updates for the generator and the discriminator, respec-
tively. It is about 8.7 epoches for training the generator and
1.7 epoches for training the discriminator.

3. Visualization results
In this section, we show the visualization results using

different landmark generation models, as a supplement to
the Figure 5 of main paper. Specific landmark models are
L2 (L2 loss was used in the Table 1 of main paper) with
Scratch Decoder, L2 +DL with Scratch Decoder, L2 +DL

with AE Decoder and L2 +DL with PDM Decoder.
Figure 4 presents the results with blurhead images as in-

put. In most cases, we achieve the best visual quality as well
as the lowest landmark generation errors using the PDMDec
model.

Figure 5 presents the results with blackhead images as
input. Similar to blurhead results, the PDMDec model con-
tributes to the best visual quality. It is worth to note that the
smaller landmark error (mean L2 distance) do not mean the
better visualization quality. The prediction of face pose and
position depends on the body/scene context in the black-
head case. The quality of the generation is evaluated ac-
cording to the facial organ consistency when the pose and
position are reasonable. The mean L2 distance to the de-
tected landmarks (used as ground truth) is only a reference.

Additionally in Figure 6, we show some examples us-
ing direct copy-paste method, corresponding the “NN head
copy-paste” row in the Table 1 of main paper. Candidate
images are searched in the training data based on the nor-
malized L2 distance between detected landmarks. The face
poses match the bodies in most cases, but the method results
in unpleasant output images.
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Figure 1: The architecture of the Encoder used in Landmark Generator GL.
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Figure 2: The architecture of the Auto-encoder used for pre-training the AE Decoder (AEDec). The pre-trained AE Decoder
will be connected to GL Encoder through the bottleneck layer zL.

4. Obfuscation performance against AlexNet

Experiments in the main paper have focused on the ob-
fuscation performance with respect to a GoogleNet-based
recognizer. However, as argued in the main paper, our ob-
fuscation approach is target-generic: it is not generated
with respect to a particular recognition system and is ex-
pected to work against a generic system.

This section additionally shows the obfuscation per-
formance on an AlexNet-based recognizer. We use the
same “feature extraction - SVM prediction” framework as
in the main paper; we replace the feature extractor by
AlexNet. See Table 1 for the quantitative comparison be-
tween GoogleNet and AlexNet recognizers.

The two recognizers exhibit different behaviours. First
of all, on clean images, AlexNet performs worse than

GoogleNet (81.6% < 85.6%), while on head-inpainted im-
ages, AlexNet shows greater robustness (e.g. 37.9% versus
45.1% on “Blur input - L2 + DL - PDMDec”). We also
observe systematically less contributions from the head re-
gion: 72.2% (GoogleNet) versus 66.0% (AlexNet) on clean
images, and consistent drop in head contribution on in-
painted images (20% ∼ 30%). AlexNet predictions are
supported more by non-head regions, at least partially ex-
plaining its robustness against head obfuscation.

Although AlexNet recognizer turns out to behave quite
differently from the GoogleNet model, we still reach the
same conclusion regarding the superiority of our inpainting-
based obfuscation over common patterns like blacking
or blurring. For body+head, our inpainting method
(“Blur/black input - L2 + DL - PDMDec”) decreases the
recognition rate from 67.0% to 45.6% for blurheads, and
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Figure 3: The network architecture of Head Generator GH . It is based on the “U-net”. Noting that the landmark channels are
256x256x68 but are cropped to the head region size in this figure only for a better visualization of points.

Table 1: Evaluation of proposed obfuscation methods against two person recognizers in terms of person recognition rates.
This table is an extension of the recognition results in Table 1 of the main paper.

Obfuscation method Obfuscation against person recognizer

Landmark GoogleNet AlexNet

Input Loss Decoder head body+head head contrib. head body+head head contrib.

Original No head inpainting 85.6% 88.3% 72.2% 81.6% 85.3% 66.0%
Original NN head copy-paste 1.2% 7.1% 67.5% 1.4% 6.1% 46.2%

Blur No head inpainting 52.2% 71.6% 3.2% 52.0% 67.0% 20.6%
Blur Detected landmarks 43.7% 51.7% 70.8% 49.0% 48.9% 37.2%
Blur L2 Scratch 36.2% 48.4% 66.8% 44.6% 44.6% 36.7%
Blur L2+DL Scratch 38.0% 48.4% 66.6% 44.9% 45.1% 38.9%
Blur L2+DL AEDec 37.5% 48.0% 66.1% 43.9% 45.0% 37.5%
Blur L2+DL PDMDec 37.9% 49.1% 66.7% 45.1% 45.6% 38.0%

Black No head inpainting 2.1% 67.0% 14.0% 2.1% 63.2% 1.7%
Black Detected landmarks 10.1% 21.4% 70.8% 11.4% 20.5% 46.3%
Black NN landmarks 7.9% 20.4% 71.3% 10.1% 19.0% 46.0%
Black L2 Scratch 5.8% 17.4% 73.6% 7.5% 16.3% 49.0%
Black L2+DL Scratch 5.8% 17.2% 71.4% 7.5% 16.4% 47.4%
Black L2+DL AEDec 5.6% 17.4% 72.5% 7.5% 17.0% 48.7%
Black L2+DL PDMDec 5.6% 17.4% 71.0% 7.4% 16.6% 51.2%

from 63.2% to 16.6% for blackheads. Finally, we again
observe that the contribution from head region increases as
our method inpaints realistic head images. This leads to
the same conclusion as for GoogleNet in the main paper:
inpainted head images direct recognizer attention to head
region, inducing a wrong decision based on the inpainted
head.
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Figure 4: Visualization results on PIPA dataset. The input is blurhead image both for landmark generation and head genera-
tion. Landmark generation error (the distance to the detected ones) is given under each instance.
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Figure 5: Visualization results on PIPA dataset. The input is blackhead image both for landmark generation and head
generation. Landmark generation error (the distance to the detected ones) is given under each instance.
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Figure 6: Visualization results using the direct copy-paste method, corresponding the “NN head copy-paste” row in the Table
1 of main paper. Candidate head images are searched in the training data.


