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Implementation Details

The experimental settings for each task are listed in Table
1. ’]’ denotes the number of attention regions that are pre-
defined in each task, and ’Instances’ denotes the attended
level of the instances. The label Y and the distance metric
d(·) are adopted in the optimization of Deep Attention En-
coder (DAE) and the instance-level translation. Note that d
is jointly trained from scratch with DA-GAN, where ’Res-
Block’ denotes a small classifier that consists of 9 residual
blocks. The learned attention regions are adaptively con-
trolled by the selection of Y , ] and d(·). For example, the
instances we learned on tasks conducted on CUB-200-2011
are parts level (birds’ four parts), and for task of Coloriza-
tion and domain adaption, the attended instances are objects
(flower and characters).

Experiments on CUB-200-2011

More results generated by DA-GAN are shown in Figure
2. It can be seen that, given one description, the proposed
DA-GAN is capable of generating diverse images accord-
ing to the specific description. Comparing with existing
text-to-image synthesis works, we train the DA-GAN by un-
paired text-image data. Especially, because of our proposed
instance-level translation, we can achieve high-resolution
(256 × 256) images directly, which is more applicable than
StackGAN (it needs two stages to achieve the same resolu-
tion). We also showed more results for Pose Morphing in
Figure 4. Note that, the target should be bird breeds (im-
age collections). Here we just random select one image to
represent each bird breeds for reference.

Human Face to Animation Face Translation

In this experiments, we randomly select 80 celebrities
which consists of 12k images for source human face im-
ages. We also showed fine-grained translation results in Fig-
ure 1. We can see that, with the same person, DA-GAN is
capable of generating diverse images, while still remain the
certain one’s identity attributes, e.g. big round eyes, dark
brown hairs, etc.

Datasets Label Y ] Instances d(·)
MNIST & SVHN 10 1 object ResBlock
CUB-200-2011 200 4 parts VGG

FaceScrub 80 4 parts Inception
Skeleton-cartoon 20 4 parts VGG

CMP [2] None 4 parts L2
Colorization [3] Binary 1 object ResBlock

Table 1: Implementation Details.

Figure 1: Fine-grained translation results.

Translation on Paired Datasets
We also conduct experiments on paired datasets. The image
quality of ours results is comparable to those produced by
the fully supervised approaches while our method learns the
mapping without paired supervision. For the task of Skele-
ton to cartoon figure translation, we retrieved about 20 car-
toon figures which consists of 1200 images on websites, and
adopt Pose Estimator by [1] to generate skeletons for each
image. The DA-GAN is trained by feeding into skeletons
and generate cartoon images.
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Figure 2: Experimental Results of text-to-image synthesis.

Figure 3: Results of pose morphing. In each group, the first column is the source image, the second row is target images.
The red dashed box labeled the generated images, which possess the target objects pose while remain the source objects
appearance.
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Figure 4: The first row is source images, and second row is target images. The translated images are placed in the third row,
labeled by red dash box.

Figure 5: Results of human-to-animation faces translation. In each group, the first row is human faces, and the second row is
translated animation faces.

Figure 6: Results of architectural labels-to-photos translation. In each group from left to right are the input of labels, the
translated architecture photos, and the ground truth.

Figure 7: Results of image colorization. In each group, the input is gray images, and the results are translated color images.
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