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Abstract

This is the supplementary material for the paper en-
titled “Deep Cocktail Network: Multi-source Unsuper-
vised Domain Adaptation with Category Shift”. In the
appendix.A, we introduce the architectures of deep cocktail
network (DCTN) and the corresponding implementation in-
formation in the experiments. In the appendix.B, we present
more detailed results about object and digit recognitions in
the vanilla and category shift settings.

1. Appendix.A

1.1. Architectures

In object recognition, deep domain adatation models [4]
[5] mostly apply Alexnet [3] as their backbones. To achieve
a fair comparison, we choose a DCTN architecture deriv-
ing from the Alexnet pipeline. As the Fig.1 illustrated, the
representation module F is designed as a five-layer fully-
convolutional network with three max-pooling operators,
and the (multi-source) category classifier C is a three-layer
fully-connected multi-task network. They are stacked into
an exectly Alexnet-like pipeline to categorize images. For
our multi-way adversarial adaptation, we adopt a CNN-
based two-output classifier as two-source domain discrimi-
nator D.

Compared with natural images, digits contain less visual
information. Hence we choose lighter structures as our rep-
resentation module F , category classifierC and domain dis-
criminator D for digit recognition, specifically as the Fig.2
reveals. We also combine F and C as the backbone of
Source only and DAN to fairly compare our DCTN.

∗Corresponding author: Liang Lin. † indicates equal contribution. This
work was supported by National Science Foundation of China under Grant
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and Technology Innovation (under Grant pdjhb0009).

Figure 1. The representation module, domain discriminator and
category classifier we used in the experiments about object recog-
nition. (Best viewed in color)

Figure 2. The representation module, domain discriminator and
category classifier we used in the experiments about digit recogni-
tion. (Best viewed in color)

1.2. Stablizers

For the sake of legibility, we apply the sigmoid cross en-
tropy loss to denote the multi-way adversary further induc-
ing the perplexity score formula in our paper. In spite of a
classical expression in many adversarial adaptations [1] [7],
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this loss function easily causes the gradient vanishing prob-
lem during the multi-way adversarial learning process. To
overcome this, we utilize the least square measuring func-
tion [6] to execute the adversarial learning.

L(ls)
adv(F, D) =

1

N

N∑
j

Ex∼Xsj
[(Dsj (F (x)))2]

+ Ext∼Xt
[(1−Dsj (F (xt)))2]

(1)

Accordingly, the confusion loss has been revised as

L(ls)
cf (x;F,Dsj ) = (Dsj (F (x))− 1

2
)2 (2)

then given a target instance xt, we have a least square per-
plexity score

S(ls)
cf (xt;F,Dsj ) = (Dsj (F (xt)))2 + αsj (3)

. These revisions keep consistent in all our analysis in the
paper, meanwhile stablize the multi-way adversarial learn-
ing in the DCTN.

No matter in training or testing, we require perplexity
score weighting to predict the class of target instance. While
in the adversarial learning process, the domain discrimina-
tor D must be gradually trained to accommodate the learn-
ing of representation module F . It means in the previous
epoches, the perplexity score is not able to provide reliable
probablistic relations between target and each source. This
harms the pseudo-labeling scheme and further spoils the ad-
versary at the next alternative step. Empirically we find that,
such negative effect mostly comes from the unstable predic-
tions toward single target instances. Hence we utilize the
moving average to calculate the perpelxity score for each
target instance.

S(ls)
cf (xtNT

;F,Dsj ) =
1

NT

NT∑
i

(Dsj (F (xti)))
2 + αsj (4)

where NT denotes how many times the target samples have
been visited to train our model, and xtNT

denotes the current
target instance we are considering. We also apply the same
strategy to obtain a stable consentration constant αsj .

αsj =
1

NT

NT∑
i

(Dsj (1− F (x
sj
i )))2 (5)

where xsji denotes the source j instance come along with
the coupled target instances in the adversarial learning.

1.3. Training

In object recognition, we initiate our DCTN by follow-
ing the same way of DAN [4]. In terms of digit recognition,
we perform DCTN learning from scratch. In order to exe-
cute online hard domain sample mining, we construct our
mini-batch by sampling a equal number of images in each
domain. For instance, let’s consider a two-source domain

Table 1. The hyper-parameters setting in our experiment.

Office-31
ImageCLEF-
DA

Digit-five

domain
batch size

32 32 128

pseudo
threshold γ

0.9 0.98 0.9

learning
rate

0.00001 0.000002 0.00001

image size 227×227 227×227 32×32

adaptation with domain batch size 32. Then we have mini-
batches with sizes as 96 = 32× (2+1) (2 and 1 denote two
source domains and one target domain). In this situation,
the length of epoch is decided by the size of the domain con-
taining most instances. Finally, we adopt Adam [2] solver
with momentum = (0.9, 0.99) in all experiments to up-
date our networks.

More hyper-parameter details have been further demon-
strated in Table.1.

2. Appendix.B

In this section, we provide the extensive evaluation based
on the main results in our paper. In the vanilla setting (Ta-
ble 2-4), we append the single source transfer results and
the average performances in all methods. In the category
shift setting (Table 5-6), we offer the upperbound results
(the corresponding accuracies in vanilla setting), then illus-
trate how to obtain the accuracy degradation and transfer
gain in each result.
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Table 2. Classification accuracy (%) on Office-31 benchmark for MDA in the vanilla setting.
Standards Models W→D A→D A→W D→W D→A W→A Avg

Single
source

TCA 95.2 60.8 61.0 93.2 51.6 50.9 68.8
GFK 95.0 60.6 60.4 95.6 52.4 48.1 68.7
DDC 98.5 64.4 61.8 95.0 52.1 52.2 70.7

DRCN 99.0 66.8 68.7 96.4 56.0 54.9 73.6
WMMD 98.7 64.5 66.8 95.9 53.8 52.7 72.1
RevGrad 99.2 72.3 73.0 96.4 53.4 51.2 74.3

DAN 99.0 67.0 68.5 96.0 54.0 53.1 72.9
RTN 99.6 71.0 73.3 96.8 50.5 51.0 73.7

A,W→D A,D→W D,W→A
Source
combine

Source only 98.1 93.2 50.2 80.5
DAN 98.8 95.2 53.4 82.5

Multi-
source

Source only 98.2 92.7 51.6 80.8
RDALR 31.2 36.9 20.9 29.7
sFRAME 54.5 52.2 32.1 46.3

SGF 39.0 52.0 28.0 39.7
DCTN (ours) 99.6 96.9 54.9 83.8

Table 3. Classification accuracy (%) on ImageCLEF-DA benchmark for MDA in the vanilla setting.
Standards Models I→P C→P I→C P→C P→I C→I Avg

Single
source

RevGrad 66.5 63.5 89.0 88.7 81.8 79.8 78.2
DAN 67.3 61.6 87.7 88.4 80.5 76.0 76.9
RTN 67.4 63.0 89.5 90.1 82.3 78.0 78.4

I,C→P I,P→C P,C→I
Source
combine

Source only 68.3 88.0 81.2 79.2
DAN 68.8 88.8 81.3 79.6

Multi-
source

Source only 68.5 89.3 81.3 79.7
DCTN (ours) 68.8 90.0 83.5 80.8

[7] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Ad-
versarial discriminative domain adaptation. arXiv preprint
arXiv:1702.05464, 2017. 1



Table 4. Classification accuracy (%) on Digits-five benchmark for MDA in the vanilla setting. Source only (ensemble) and DAN (ensemble)
denote the target classifiers ensembled by their corresponding single source classifiers.

Standards Models mm
→ sv

mt→
sv

sy→
sv

up→
sv

mt→
mm

sv→
mm

sy→
mm

up→
mm

Avg

Single
source

Source only 45.3 46.4 67.4 29.7 58.0 49.6 54.8 43.7 49.4
DAN 43.2 42.2 67.1 38.5 53.5 51.8 58.8 40.5 49.5

mm, mt, sy, up→ sv mt, sv, sy, up→ mm
Source
combine

Source only 72.2 64.1 68.2
DAN 71.0 66.6 68.8

Multi-source
Source only (ensemble) 64.6 60.7 62.7

DAN (ensemble) 62.6 62.9 62.8
DCTN (ours) 77.5 70.9 74.2

Table 5. Evaluations on Office-31 (A,D→W) for MDA in the category shift setting.
Category
Shift Models Accuracy Upperbound Accuracy

Degrade Transfer Gain

Overlap
Source only 84.4 92.7 84.4-92.7=-8.3 84.4-84.4=0

DAN 87.8 94.2 87.8-94.2=-6.4 87.8-84.4=3.4
DCTN(ours) 90.2 96.9 90.2-96.9=-6.7 90.2-84.4=5.8

Disjoint
Source only 78.1 92.7 78.1-92.7=-14.6 78.1-78.1=0

DAN 75.5 94.2 75.5-94.2=-18.7 75.5-78.1=-2.6
DCTN(ours) 82.9 96.9 82.9-96.9=-14.0 82.9-78.1=4.8

Table 6. Evaluations on ImageCLEF-DA (I,P→ C) for MDA in the category shift settings.
Category
Shift Models Accuracy Upperbound Accuracy

Degrade Transfer Gain

Overlap
Source only 86.3 89.3 86.3-89.3=-3.0 86.3-86.3=0

DAN 85.5 89.5 85.5-89.5=-4.0 85.5-86.3=-0.8
DCTN(ours) 88.7 90.0 88.7-90.0=-1.3 88.7-86.3=2.4

Disjoint
Source only 81.5 89.3 81.5-89.3=-7.8 81.5-81.5=0

DAN 71.0 89.5 71.0-89.5=-18.5 71.0-81.5=-10.5
DCTN(ours) 82.0 90.0 82.0-90.0=-8.0 82.0-81.5=0.5


