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1. Weakly-supervised segmentation

precision-recall plots.

In Figures [] Bl [l we present full precision-
recall plots from various experiments on weakly-
supervised segmentation, including ablation studies
and comparisons to prior work. The area under the
curve (AUC) statistics summarizing these plots are pre-
sented in the main paper.

2. More segmentation statistics and com-
plete visualizations

Tables and [] show the per-category perfor-
mance of different deep and shallow WU-Net variants
for strongly-supervised segmentation on the standard
ShapeNet dataset, on (a) the train/test splits from
Kalogerakis et al. [I], (b) on randomly rotated versions
of the shapes in these splits, and (c) the splits from
the recent ICCV challenge [4] (both accuracy and IOU
statistics) respectively. Different variants of WU-Net-
style networks are given abbreviated names: 3SU is a
sequence of 3 shallow U’s (i.e. WU-Net), 1DUI is 1
single deep U (Inception-style).

Our project website for this paper has visualizations
of all segmentations of shapes in our datasets under
both weak and strong supervision of WU-Net.

The performance of WU-Net on weakly-supervised
segmentation of test set shapes mirrors that on the
training set, as can be seen in Table 4 of the main
paper as well as the visualizations on the website.
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Figure 1: WU-Net (red) consistently outperforms a
Stacked Hourglass Network SHN3p (3 deep U’s without
low resolution skip connections between different U’s,
green) on all categories (on training shapes, outputs
symmetrized).
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Figure 2: WU-Net vs various ablations for weakly-supervised segmentation (on training shapes).
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Figure 3: WU-Net vs Deep U alternatives (symmetrized) for weakly-supervised segmentation (on training shapes).
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Figure 4: Weakly supervised WU-Net vs a strongly supervised baseline (on test shapes).
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Figure 5: WU-Net vs Shilane and Funkhouser (SF) [3] at different scales (on training shapes). Note that SF
requires knowledge of ground truth tags at test time, whereas our method does not use them.
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Figure 6: The statistical effect of increasing the kernel size for average pooling at the end of WU-Net.



Category || #train/ | #labels || Shape- | Shape- |1 SU | 2 SU 3 SU 4SU1DU(2DU|3DU|1DUI|2DUI|3 DUI
#test Boost | PFCN (WU-Net)

Airplane [[250/250] 4 84.1 | 88.4 [89.54[90.32] 90.13  [90.66]90.34]90.75[90.77[ 91.12 | 90.87 [ 90.97
Bag 38/38 2 943 | 955 |93.24/96.51] 96.02 [95.53[96.18[95.26 [ 96.21 | 96.24 | 96.15 [ 96.19
Bike [[101/101] 6 78.6 | 87.5 [80.84[84.07] 84.77 [85.75|85.04[85.04 |85.54[ 85.19 | 83.66 [ 85.9
Cap 27/28 2 94.8 | 92 [87.77[88.7[ 89.82 [88.63]90.27[91.19[86.31] 90.75 | 91.69 [ 91.88
Car 250/250 4 75.5 | 86.6 [88.91[89.61] 89.44 [89.67| 89.7 [89.87[90.02] 90.13 [ 90.15 | 90.17
Chair  [[250/250[ 4 71.9 | 83.7 [90.47[92.01] 91.82 |[91.9 [92.24[92.01[92.11[ 92.32 | 92.3 [ 92.4

Earphone || 34/35 3 76 | 82.9 [67.21[75.86] 78.53 |74.44|78.24[80.84|74.71| 822 | 77.34 | 79.73
Guitar  [|250/250 3 86.9 | 89.7 [95.89[96.22] 95.98 [96.09]96.22[96.23 [ 96.19 [ 96.26 | 96.23 [ 96.29
Knife  [[196/196 2 84.1 | 87.1 [83.81[90.33[ 90.96 [92.42[91.57[91.34[91.37[ 91.69 | 91.83 [ 90.91
Lamp [[250/250] 4 63.8 | 783 |[75.75[77.97| 77.37 [80.91] 82.7 [83.63|82.96 | 84.38 | 83.82 [ 85.09
Laptop [222/222] 2 794 | 952 [96.86[96.57| 96.61 [96.63]96.33[96.48 | 96.51 [ 96.56 | 96.62 | 96.84
Mug 92/92 3 98.1 | 98.1 [98.94[99.09] 99.05 [99.17[99.14[98.81[99.16] 99.16 | 99.14 [ 99.15
Pistol  [[137/138] 3 84.9 | 922 [94.46[96.01[ 95.75 [96.05]96.41[96.51 | 96.7 | 96.55 | 96.54 [ 96.55
Rocket || 33/33 3 83.2 | 81.5 |75.64[75.35] 79.94 [75.36]76.29[76.9875.61[ 77.93 | 78.05 [ 79.73

Skateboard || 76/76 3 89.6 | 925 [94.54[94.32] 94.66 [94.23]93.91[92.97 [93.62] 94.33 | 94.36 | 94.36
Table [[250/250] 3 83.9 | 925 [90.33[93.58[ 92.91 [92.99]93.94]93.32[94.37[ 94.57 | 94.92] 94.42

Category average | 83.07 [ 88.98 [87.76]89.78] 90.24 [90.03]90.53] 90.7 [90.14] 91.21 | 90.85 [ 91.29

Table 1: Dataset statistics and strongly-supervised segmentation and labeling accuracy per category for test shapes
in ShapeNetCore, versus ShapePFCN [I] and ShapeBoost [2], using the splits from [I].

Category || #train/ | #labels || Shape- | Shape- |1 SU |2 SU 3SU 4SU|1DU|2DU|3DU|1DUI|2DUI|3 DUI
#test Boost | PFCN (WU-Net)

Airplane [[250/250] 4 84.1 [ 88.4 [70.15[80.76] 78.83 [76.99]79.77[80.54[78.54 79.97 [ 81.29 [ 80.88
Bag 38/38 2 94.3 [ 95.5 [93.67] 93.2| 9245 [93.49/93.09| 93.5 [93.01] 93.04 [ 93.69 | 93.22
Bike [[101/101] 6 78.6 | 87.5 [73.17|71.98] 73.86 [74.63|71.73|72.65|73.35| 71.92 [ 72.18 | 72.22
Cap 27/28 2 94.8 [ 92 [73.43|70.79] 72.98 [72.54|70.23|68.22|74.31| 73.37 | 72.84 | 75.03
Car  [[250/250[ 4 75.5 | 86.6 [74.66]76.12] 78.03 [ 78.3 |78.42|80.02[80.25| 77.58 | 78.8 | 78.49
Chair [|250/250| 4 71.9 | 83.7 [55.32]66.14] 69.62 [74.99|79.77| 77.9 [80.51] 78.68 [ 81.01 | 80.87

Earphone || 34/35 3 76 | 82.9 [61.93[65.75] 66.98 |65.44[ 66.9 [68.52[66.02] 65.97 | 64.42 [ 66.4
Guitar [[250/250] 3 86.9 | 89.7 [88.54]91.91| 92.16 [93.01]93.06|94.17/93.25| 93.65 | 93.4 | 93.66
Knife [[196/196] 2 84.1 [ 87.1 [71.33|71.55] 70.24 [71.01]79.24|80.25|78.04 | 80.05 | 79.02 | 79.61
Lamp [[250/250[ 4 63.8 | 78.3 [ 58.5 [58.65] 60.63 [64.05]66.68 | 65.87|68.64 | 71.14 | 69.34 | 70.98
Laptop [[222/222] 2 79.4 | 95.2 [53.91]56.36] 54.39 [51.64|57.12]| 50.6 |57.71] 62.18 | 62.64 | 62.43
Mug 92/92 3 98.1 [ 98.1 [95.77|97.29] 97.5  [97.58]96.86 | 97.26 | 96.14 | 96.55 | 96.41 | 96.37
Pistol [[137/138] 3 84.9 [ 92.2 [67.2[61.88] 66.69 [65.06]77.14|77.87|76.92| 74.59 | 74.71 | 74.11
Rocket | 33/33 3 83.2 | 81.5 [71.96]70.85] 69.26 [70.72]67.12|69.24|68.43 | 67.59 | 72.09 | 69.86

Skateboard]| 76,/76 3 89.6 | 92.5 [84.98[85.5 | 85.08 |[84.85]82.31[ 82.3 |86.42[ 80.84 | 85.51 [ 82.92
Table [|250/250] 3 83.9 [ 92.5 [74.77]76.9 | 73.45 [75.34]85.2786.32[86.89 | 86.19 [ 87.29 | 87.05

Category average | 83.07 [ 88.98 [73.08[74.73] 75.14 [75.6 [77.79[77.83]78.65] 78.33 | 79.04 [ 79.01

Table 2: Dataset statistics and strongly-supervised segmentation and labeling accuracy per category for randomly
rotated test shapes in ShapeNetCore, versus ShapePFCN [I] and ShapeBoost [2], on the splits from [I].



Category || #train/ | #labels || 1 SU |2 SU 35U 4SU|1DU|2DU|3DU|1DUI|2DUI|3 DUI
#test (WU-Net)

Airplane [[1958/341] 4 [[87.46[89.18] 89.61 [89.73[ 90.4 [90.16[90.32[ 90.51 | 90.65 [ 90.74
Bag 54/14 2 [[93.51[90.96] 93.44 [92.83]96.02[95.57 |95.74 | 96.12 [ 96.43 | 96.56
Bike |[[125/51 | 6 [[75.35/75.89] 86.36 | 86.9 [73.64|77.78| 87.1 | 86.95 | 86.1 | 86.83
Cap 39/11 2 [/88.32[87.01] 87.4 [87.24|83.35[86.7288.38|90.62 [ 87.47 | 85.63
Car  [[659/158] 4  [[89.24]90.34] 90.41 90.49( 90.25 | 89.94[90.19 | 90.24 | 90.21 | 90.42
Chair [2658/704] 4  [|91.16(92.93] 93.13 [ 93.4 [93.85[93.91[93.92( 93.95| 94 [ 93.98

Earphone | 49/14 3 |[70.54[90.35] 91.6 [91.61]91.68] 92.1 [92.52] 87.3 | 91.5 [ 91.64
Guitar [[550/159| 3 [[95.63]95.75] 95.65 [95.89/96.11]95.96 | 95.66 | 95.88 [ 96.05 | 95.89
Knife [[277/80 | 2 [[83.28]90.8 | 91.98 [90.7 [91.93]91.0890.77 [92.31[ 91.83 | 91.49
Lamp [[1118/296] 4 [[73.87|78.21] 78.38 [80.49(88.27|88.18[87.19| 88.1 | 86.47 | 87.83
Laptop [ 324/83 | 2 [[96.66]96.88] 96.79 [97.23]96.15| 95.9 |95.56 | 96.73 [ 96.51 | 96.8
Mug [[130/38 [ 3 []99.29[99.43] 99.42 [99.39] 99.44[99.46] 99.4 [ 99.34 | 99.38 | 99.43
Pistol [ 209/44 | 3 [[92.94]94.46] 94.33 [94.85]95.84|95.98 [96.01] 95.91 | 95.85 [ 96
Rocket [| 46/12 3 |[75.11]73.67| 74.46 [74.76]72.93]69.85 | 74.94] 71.45 | 74.01 | 74.2

Skateboard| 106/31 | 3 94.5 [94.13] 93.73 [ 94.1 | 94.68[94.85]94.57 | 94.19 [ 93.9 | 94.34
Table [[3835/848 3  ||85.25[87.03] 88.94 [88.14] 93 [92.64|92.17[94.38] 93.78 | 92.22

Category average [87.01]89.19] 90.35 [90.48]90.47[90.63 [91.53] 91.5 [ 91.51 | 91.5

Table 3: Dataset statistics and strongly-supervised segmentation and labeling accuracy per category for test shapes
in ShapeNetCore on the new splits from the ShapeNet ICCV Challenge [4].

Methodl avg ‘ plane ‘ bag ‘ cap ‘ car ‘ chair ‘ earphone ‘ guitar ‘ knife ‘ lamp ‘ laptop ‘ bike ‘ mug ‘ pistol ‘ rocket ‘skateboard‘ table

2 DUI'83.13 81 [83.2(75.2575.22(89.04| 71.68 | 89.24 [84.15|75.85| 93.46 |69.27|94.19| 81.38 | 54.34 73.39 | 80.86
1 DUI [82.89 80.83 |81.881.1675.31)89.02| 60.22 | 88.93 |84.99|77.72| 93.37 |70.12/ 93.9| 82 | 50.28 72.46 |80.12
3 DUI81.12 80.9 [83.4|73.1(75.9389.04| 73.94 | 89.13 [83.59| 77.1 | 93.51 (69.44| 94.7 | 82.61 | 47.32 72.7 74.52
3 DU [81.13] 80.35 [78.91(76.6775.63 88.87| 74.96 | 88.16 |82.94|75.56| 92.53 [69.17|94.49| 82.22 | 49.6 73.77 |75.39
1 DU [81.03 80.42 81.7568.8273.95/88.81| 73.97 | 89.82 [84.34|76.64| 92.85 |29.7|94.78| 82.18 | 48.69 71.95 |77.47
2 DU 80.97 79.91 [79.56/ 74 [74.36/88.75| 70.5 89.08 |83.12|75.45| 92.93 [34.75(94.92| 82.95 | 46.14 74.15 |77.38
4 SU [79.84 77.19 168.7976.5275.01) 87.41| 68.59 | 89.54 [83.16|68.08| 93.96 |68.63|94.28| 80.07 | 50.07 71.57 |74.91
3 SU [79.35 76.51 | 71.2(76.3975.0786.95| 69.24 | 89.08 |84.64|66.87| 93.26 |61.91{94.66| 77.18 | 51.56 71.04 | 74.62
2 SU (77.87 75.31 [59.01]74.6874.35/ 86.24| 68.46 | 89.15 |82.75|63.03| 93.34 [25.04{94.71| 77.49 | 44.69 71.73 | 74.32
1 SU (74.35| 70.86 [73.46/78.0669.05(81.31| 37.21 | 88.49 |71.97|58.67| 93.01 [24.66(93.73| 74.71 | 46.46 73.23 |72.23

Table 4: IOU scores for different versions of Deep and Shallow-U networks for strongly-supervised segmentation
of test shapes in ShapeNetCore on the new splits from the ShapeNet ICCV Challenge [4].



