
Supplementary Material for Improved Lossy Image Compression with Priming
and Spatially Adaptive Bit Rates for Recurrent Networks

In this Supplementary Materials document, we include
some cross-references to the main paper, for clarity. Ref-
erences that are prefixed with “P-” refer to the main paper.
References to material within this supplementary document
are made without prefix.

1. Derivation of Spatial Support Equations
Our belief is that some of the improvement in the com-

pression results with diffusion and, to some extent, with
priming is due to the additional spatial context provided by
these stages that is available to the hidden-state vectors of
the recurrent units. This section provides the derivation of
the spatial-support equations provided in Subsections P-3.1
and P-3.2.

Figure P-1 shows, at a high level, a single iteration
through the network architecture that we use for our encoder
and decoder networks. The name and type of layer is shown
by the “Ei : I/H” for the encoder (or “Di : I/H” for the
decoder) label in the bottom, front corner of each plane: the
input convolutional kernels will be (spatially) I × I (and
fully connected across depth) and the hidden convolutional
kernels will be H×H , with H = 0 corresponding to layers
which have no hidden state. The input to the encoder is the
residual image: that is, the difference between the previous
iteration’s reconstruction and the original image. On the
first iteration, this residual is just the original image itself.
With k-priming and k-diffusion, the input that is to be used
on the next iteration is processed k times, with the outputs
(either the bit stacks or the reconstruction) discarded before
the actual iteration is run and the output is kept.

The recurrent layers in the encoder and decoder (that is,
E1, E2, E3, D1, D2, D3, and D4) use Gated Recurrent
Units [4] (GRU):

yt = ht = (1− zt)� ht−1 + zt � h̃t, (1)

h̃t = tanh(Wxt + U(rt � ht−1)), (2)
zt = σ(Wzxt + Uzht−1), (3)
rt = σ(Wrxt + Urht−1). (4)

where t is the iteration number; � denotes element-wise
multiplication; and omitted operators correspond to spatial
convolution (with fully connected operation across depth).

Using the terms introduced by [4]: rt is the reset gate; zt is
the update gate; ht is the activation; and h̃t is the candidate
activation. The output, yt, is the same as the activation, ht.
The spatial extents of W , Wr, and Wz are I × I: that is,
3 × 3 for all the GRU layers in Figure-P 1. The spatial
extents of U , Ur, and Uz are H × H: that is, 1 × 1 for all
of the GRU layers in the encoder and for the first two GRU
layers in the decoder and 3× 3 for the last two GRU layers
in the decoder.

Using the Baseline architecture (Figure P-2-a), the spa-
tial context from the original image input to each binary
code and to each pixel of the reconstruction can be com-
puted by examining the stacked spatial supports of the en-
coder (for the first iteration’s binary codes); of the encoder
followed by the decoder (for the first iteration’s reconstruc-
tion); or of encoder, decoder, and all state vectors (for sub-
sequent iterations). We use SI(Ft−1) to denote the pixel-
to-pixel support, starting from the input image through to
the output image for iteration t − 1 (where the subscript
I is used to refer to the target input image, as opposed
to subscript B, below, to refer to the bit rate). Then, for
iteration t, in the encoder, since the hidden convolutions
are all 1 × 1 (or none for the feedforward layers) each
layer i in the encoder increases the spatial context from
the previous layer i − 1 to give a SI(Ei,t) × SI(Ei,t) sup-
port equation of SI(Ei,t) = (Ii − 1)2i + SI(Ei−1,t) with
SI(E−1,t) = SI(Ft−1) and SI(F−1) = 1. On the first it-
eration, the spatial context of the last encoder GRU layer is
E3,0 = 31. (The feedforward layer just before the binarizer
(‘1/-1’) does not change the spatial support.)

The support from the binary code to the ith layer of the
decoder network goes as SB(Di,t)× SB(Di,t) where

SB(Di,t) = max(

max(Hi − 1, 0) + Ii − 1

2max(i−1,0)
+ SB(Di−1,t),

max(2 ∗ (Hi − 1), 0)

2max(i−1,0)
+ SB(Di,t−1)) (5)

and SB(D0,t) = Di,−1 = 1. The concatenation of H
and I in the expansion of the support is due to the chained
dependence from xt to rt (usingWr with a support of I×I)
and then from rt through h̃t to yt (using U with a support
of H × H) while the doubling of H is due to the chained
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Figure 1. Error in stacked single-pole IIR filters, starting from a zero initialization state, using a = 0.25, a = 0.333, and a = 0.4, from left
to right. The later filters in the stack take more iterations to achieve the same level of error, even though their coefficients and initializations
are the same, due to the compounding effect of the incorrect inputs that they receive from the previous filters at early time steps and the
zero-state initialization.

dependence from ht−1 to rt (using Ur with a support H ×
H) and then (again) from rt through h̃t to yt. For those
layers whereDi is a fractional number, the floor and ceiling
of the spatial dependence each happen at different offsets
within the reconstruction. Using this formula, D4,0 = 5.5
(so the spatial dependence from the binarizer to the output
of the last decoder layer is {5, 6} × {5, 6} depending on
position).

The support from the input image to the decoded image
is SI(Ft) = (SB(D4,t)− 1) ∗ 16 + SI(E3,t).

Bringing all of these together for the architecture shown
in Figure P-1 gives maximum supports of

max(SB(Ft)) = 6 ∗ t+ d5.5e (6)
max(SI(Ft)) = 16 ∗max(SB(Ft)) + 15 (7)

Using the priming or diffusion architectures (similar
to Figure P-2-b and -c, respectively), there are additional
stages before the first set of used encoder bits and addi-
tional stages before the first used reconstruction from the
decoder. Since the input values do not change during these
priming stages, the support on the encoder (or decoder) does
not change. However, the support provided by the hidden
states within recurrent units that have a hidden-kernel sup-
port larger than one will change. On the first layer where
the hidden-kernel support is larger than one, the path for
the expanding support is through the hidden-state propaga-
tion: that is, max(2∗(Hi−1),0)

2max(i−1,0) + SB(Di,t−1) in Equation 5.
On layers that follow a previous layer with hidden-kernel
support larger than one that themselves have hidden-kernel
support larger than one, both terms in Equation 5 provide al-
ternatives for increases in spatial support. With the kernels
that we have used (see Figure P-1), these two alternatives
provide the same increase in support on these later layers.

For priming, the increase only happens once, before the
first iteration. It operates as if there were an additional k
repetitions of the hidden layers with the spatially-expansive
hidden-kernel support, but only for the t = 0 pass through

Equation 5. The increase for diffusion is similar but oc-
curs on all iterations (not just on the first one), so the final
amount of increase in support depends on the number of it-
erations t. In both cases, using the kernels indicated in Fig-
ure P-1, each priming or diffusion stage in the decoder adds
another d1.5e bit stacks to dependence SB(Ft). Pulling that
all together gives

max(SB(Ft)) = d1.5 ∗ kd + 5.5e ∗ t+ d1.5 ∗ kp + 5.5e

2. Error Propagation due to Hidden-State Ini-
tialization

In addition to a wider spatial support, priming allows the
GRU units to initialize the hidden-state values to an input-
dependent value before it is used in the output. We can make
an analogy to the output of an infinite-impulse response
(IIR) filter. Let’s say that we have a simple (single-pole)
IIR filter:

y[t] = ay[t− 1] + (1− a)x[t] (8)

for 0 < a < 1. As with GRU, the hidden state is the previ-
ous output value. Comparing the GRU unit to a single pole
filter is the best analogy, since both have memory of the
previous–time-step output but not direct memory of further
back in time.

If the input, x[t], is a constant (e.g., 1), we ultimately
want Equation 8 to converge to that same constant. If we
start from an initialization of y[−1] = 0 (as we do with our
GRU layers), the error in the value of Equation 8 is at+1.
For this one single-pole filter, if we are willing to accept an
error of a2, then we would accept the output at t = 1: that
is, with 1-priming.

When we have stacked recurrent units, then the layers af-
ter the first layer start, not only with the wrong hidden state
but also with the wrong input value, since that input value
includes the error from the previous recurrent layer. Con-
tinuing with our IIR example, let us consider if we were to
stack three layers of the same single-pole IIR filter, similar
to what we have in our encoder network. The error at the
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Figure 2. Rate savings (a & b) and quality improvement (c & d) for different codecs, relative to JPEG 420 under MS-SSIM for Kodak (a &
c) and Tecnick (b & d), according to Bjøntegaard Delta.

output of the second filter is (t+2)at+1−(t+1)at+2, which
is greater than a2 for t = 1 and all values of 0 < a < 1. For
an error threshold of a2, we would need to use 2-priming
if 0 < a ≤ 1

3 or 3-priming for 1
3 < a < 1. Note that,

even though we have tied our error threshold to the value of
a and that threshold gets looser as the value of a increases
towards one, it still takes more priming steps to fall below
that error threshold.

The error at the output of third filter is
(t+2)(t+3)

2 at+1 − (t+ 1)(t+ 3)at+2 + (t+1)(t+2)
2 at+3

which is greater than the second-filter output error for all
values of 0 < a < 1. If a is less than about 1

3 and we
want an output error on the third filter that is a2 or less,
we need to use 3-priming; for larger values of a and an a2-
error threshold, we need to use 4-priming. Figure 1 shows
the error curves (and error threshold of a2) for values of a
at, just above, and just below 1

3 .
Since the encoder has a stack of three GRU layers and

since, in their linear operating range, they will act like a
(vector) single-pole IIR filter, we believe this analogy pro-
vides some reasoning for why 3-priming might work so
well.

3. Bjøntegaard Delta (BD) rate differences
Bjøntegaard Delta (BD) measures summarize the rate

savings or quality improvements of on codec compared to
another [3]. BD rate differences are the percent differences
in area between two RD curves, after a logarithmic trans-
form on the bitrate. When computing BD rate savings on

methods that fail to deliver the full quality range, the differ-
ence in area is only computed across quality levels provided
by both curves. BD rate differences use the log bitrate since
the human visual system is more sensitive to low-bit-rate
areas than to the high-bit-rate areas.

The RD curves that are being compared typically do not
have samples at the exact same bit rates. So, before com-
puting the difference in area, Bjøntegaard also proposed us-
ing a polynomial fit of the curves, then sampling the fitted
curve over 100 points (common for both curves), and using
the trapezoidal integration method to compute the areas.

The BD difference was originally defined for PSNR, but
since its publication, better measures of quality have been
proposed [11]. As a result, we are reporting the BD rate
computed on the logarithmic transform of MS-SSIM.

Table P-3 and Figures P-8 and P-9 compare various
codecs to JPEG 420. Due to the lower quality of JPEG at
2 bpp than the quality of the other codecs, we computed
the RD curve for JPEG out to 4 bpp, before computing the
intersection in quality levels. This allowed us to provide
BD numbers that are influenced by the high-quality bitrates
(around 1 to 2 bpp) for the other codecs that were examined.

The BD rate-savings measure takes the difference in bit
rate for each quality level that is being integrated over. Sim-
ilarly, we can examine the quality improvement by taking
the difference in quality for each bit rate that is being in-
tegrated over. Figure 2 shows the rate savings and quality
improvements using this measure, according to MS-SSIM.

Figure 3 shows the BD measures using SSIM (instead
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Figure 3. Rate savings (a & b) and quality improvement (c & d) for different codecs, relative to JPEG 420 under SSIM for Kodak (a & c)
and Tecnick (b & d), according to Bjøntegaard Delta.
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Figure 4. Rate savings (a & b) and quality improvement (c & d) for different codecs, relative to JPEG 420 under PSNR for Kodak (a & c)
and Tecnick (b & d), according to Bjøntegaard Delta.

of MS-SSIM) and Figure 4 shows them using PSNR. Our
methods do much worse, compared to other state-of-the-art
codecs when PSNR is used as the quality metric. However,
other research has shown the MS-SSIM is more strongly
correlated with human perception that PSNR [11].

4. Rate Distortion Curves

Figures 5, 6 and 7 show the RD curves on the Ko-
dak data set [8] using MS-SSIM, SSIM, and PSNR, re-
spectively. The figures include multiple existing codecs
as well as different implementations (Kakadu vs. Open-



Jpeg for JPEG2000) and parameter settings (YCbCr 4:4:4
and 4:2:0 for BPG). The curves marked “Prime”, “Prime
(EC)”, and “Prime (EC + SABR)” are the RD results for
our Best model. “Prime” is the base model that uses
the nominal bitrate (without entropy coding or SABR),
“Prime (EC)” includes entropy coding but not SABR, and
“Prime (EC + SABR)” uses both SABR and entropy cod-
ing. “BPG (4:4:4)” and “BPG (4:2:0)” use code available
from [2] in the YCbCr colorspace with the indicated chroma
subsampling. “JPEG2000 (OpenJPEG)” and “JPEG2000
(Kakadu)” use the OpenJPEG (v2.1.2) [5] and Kakadu Soft-
ware (v7.9) [9] implementation of the JPEG2000 standard.
Both results use five layers, which gave slightly better re-
sults than six, the other commonly recommended setting.
“WebP” uses the code available from Google (v0.6.0) [6]
with automatic filter strength (-af), sharp YUV conversion
(-sharp yuv), and the slowest (highest quality) compression
method (-m 6). “Theis et al. (ICLR 2017)” uses the RD
curves reported by [10] (note that evaluation numbers are
only available for Kodak for this method). “Toderici et
al. (CVPR 2017)” uses the models that were open-sourced
at [7]. All of these RD curves are computed in the RGB
space by averaging across the color channels.

Similar to the above, figures 8, 9 and 10 show the RD
curves on the Tecnick data set [1] using the same distortion
metrics (MS-SSIM, SSIM, and PSNR). The Tecnick data
set is made up of 100 digital photographs (compared to 24
for Kodak), each with a resolution of 1200×1200 (vs. 768×
512 for Kodak).

5. Full Image Examples

In this section, we show the full (un-cropped) images for
the examples we provided in Figure P-7. As with Figure P-
7, we have set a nominal target bitrate which we would like
(e.g., 1

4 bpp); selected the reconstructions from JPEG 2000,
WebP, and BPG that use that bitrate or higher (e.g., 0.293
bpp for BPG in Figure 12); and selected the reconstruction
from our Best model that uses that bitrate or lower (e.g.,
0.234 in Figure 12). This approach puts our method at a
disadvantage, sometimes a quite large disadvantage: in Fig-
ure 12, BPG uses a 20% higher bitrate than our Best model.
However, since none of the codecs provide fine-grain con-
trol of the output bitrate, we chose this to avoid any ques-
tion of providing our model with a bitrate advantage. Fig-
ure 11 shows reconstructions near 1

2 bpp for 768× 512 pix-
els. Figures 12 and 13 show reconstructions near 1

4 bpp
across two different resolutions (768 × 512 for Figure 12
and 1200 × 1200 for Figure 13). Figures 14 and 15 show
reconstructions near 1

8 bpp for 1200 × 1200 pixels. Sug-
gestions for areas of the images that show differences in
encoding approaches are included in the captions.
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Figure 5. Rate distortion curve for MS-SSIM on Kodak.



Figure 6. Rate distortion curve for SSIM on Kodak.



Figure 7. Rate distortion curve for PSNR on Kodak.



Figure 8. Rate distortion curve for MS-SSIM on Tecnick.



Figure 9. Rate distortion curve for SSIM on Tecnick.



Figure 10. Rate distortion curve for PSNR on Tecnick.



JPEG2000 @ 0.502 bpp WebP @ 0.504 bpp

BPG @ 0.504 bpp Our Best @ 0.485 bpp
Figure 11. Compression results for Kodak image 24 near 1

2
bpp. Note that BPG and WebP use nearly 4% more bandwidth than our Best,

in this comparison. For the most visible differences, consider the handrail and hanging light (in front of the dark wood) on the right; the
mural of the sun in the middle; the fencing at the bottom; the forest texture near the top; and the silhouetted tree in the upper left.



JPEG2000 @ 0.250 bpp WebP @ 0.252 bpp

BPG @ 0.293 bpp Our Best @ 0.234 bpp
Figure 12. Compression results for Kodak image 1 near 1

4
bpp. Note that BPG uses more than 25% more bandwidth than our Best, in this

comparison. For the most visible differences, consider the cross bar on the door; the texture on the stones and window shutters; and the
weeds in front of the building.



JPEG2000 @ 0.250 bpp WebP @ 0.251 bpp

BPG @ 0.251 bpp Our Best @ 0.233 bpp
Figure 13. Compression results for Tecnick image 30 near 1

4
bpp. Note that BPG (and WebP) use nearly 8% more bandwith than our Best,

in this comparison. For the most visible differences, consider the outlines of the oranges; the orange-crate edges on the left; the color of
the Clementine oranges at the bottom; and the transition from the Clementine oranges to the navel oranges at the bottom right.



JPEG2000 @ 0.125 bpp WebP @ 0.174 bpp

BPG @ 0.131 bpp Our Best @ 0.122 bpp
Figure 14. Compression results for Tecnick image 90 near 1

8
bpp. Note that BPG uses more than 7% more bandwith (and WebP uses more

than 42% more bandwidth) than our Best, in this comparison. For the most visible differences, consider the text; the eagle in the upper left;
the outer edges of the mosaic tiles; and the texture in the concrete near the top.



JPEG2000 @ 0.125 bpp WebP @ 0.131 bpp

BPG @ 0.125 bpp Our Best @ 0.110 bpp
Figure 15. Compression results for Tecnick image 32 near 1

8
bpp. Note that BPG uses nearly 14% more bandwith (and WebP uses more

than 19% more bandwidth) than our Best, in this comparison. For the most visible differences, consider the pan edge; the plate rim; the
colors in the coaster on the left; and the texture in the placemat, especially near the spatula, in the lower right.


