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In the following, we provide additional qualitative re-
sults for our 3D model retrieval approach in Sec. 1, which
complement those presented in the paper. Furthermore, we
analyze failure cases for both 3D model retrieval and the
underlying 3D pose estimation in Sec. 2. Finally, in Sec. 3
we discuss implementation details, parameter choices, and
other relevant settings.

1. 3D Model Retrieval

Fig. 2 shows additional qualitative results for 3D model
retrieval from ShapeNet [ 1] given previously unseen images
from Pascal3D+ [9] validation data for all twelve categories.
Our approach predicts accurate 3D poses and 3D models for
objects of different categories.

Fig. 1 presents further 3D model alignment results for
object detections which are not fully accurate. We signifi-
cantly improve the alignment between the object in the im-
age and an RGB rendering of our retrieved 3D model by
taking advantage of our predicted 6-DoF pose and 3-DoF
dimensions compared to just using a 3-DoF viewpoint.

2. Failure Modes

Most failure cases of our 3D pose estimation on Pas-
cal3D+ relate to low-resolution or ambiguous objects.

Fig. 3 shows 3D pose estimation results on low-
resolution image windows from Pascal3D+ validation data.
After re-scaling, the over-smoothed input RGB images lack
details and sharp discontinuities, which results in incorrect
pose predictions. In fact, even for a human it is difficult to
identify the correct object poses in these examples.

Fig. 4 shows additional failure cases, observing that
heavy occlusions, bad illumination conditions and difficult
object poses, which are far from the poses seen during train-
ing, result in incorrect pose predictions.

As shown in Fig. 5, some objects from Pascal3D+ are
symmetrical, which makes their poses not well defined. For
example, it is impossible to differentiate between the front
and back of a symmetric unmanned boat. This issue is even

more apparent for tables: Many tables are ambiguous with
respect to an azimuth rotation of , g or even have an axis
of symmetry, such as a round table. When our approach
predicts one of the possible poses that is not the annotated
ground truth pose, this is considered as a mistake by the
commonly used evaluation protocol [8].

Fig. 6 shows that visual distortions due to wide-angle
lenses (i.e., fish-eye effects), deformed and demolished ob-
jects and heavy occlusions can disturb the model retrieval
step, even if the pose estimation was successful.

3. Implementation Details

In the following, we provide implementation details and
other parameters used in our work:

Intrinsic camera parameters: In Pascal3D+, the ground
truth poses were computed from 2D-3D correspondences
assuming the same intrinsic parameters for all images. We
employ the same parameters in our approach.

Data augmentation: Like others [4, 5, 7, 8], we perform
data augmentation by jittering ground truth detections and
exclude detections marked as occluded or truncated from
the evaluation. Additionally, we augment samples for which
the longer edge of the ground truth image window is greater
than 224 pixel by applying Gaussian blurring with various
kernel sizes and 0. We randomly sample negative exam-
ple 3D models from the available data. All augmentation
parameters are randomized after each training epoch.

Meta parameters: We normalize the projections so that
the image pixel range is mapped to the interval [0,1] and use
the same Huber loss (§ = 0.01) for all 19 estimated values.
Experimentally, we found e = 1, 3 = le ® and v = le™3
to work well and set m = 1.

Network parameters: We use a batch size of 50, train
our networks for 100 epochs and decrease the initial learn-
ing rate of 1e~* by one order of magnitude after 50 and 90
epochs, and employ the Adam optimization algorithm.



3D dimensions: For both Pascal3D+ and ShapeNet, 3D
models are normalized to fit within a unit cube centered at
the origin. Thus, we estimate 3D dimensions in model space
in the range [0,1]. Since these dimensions tend to be consis-
tent within a category, estimating them is not a major issue.
Table 1 shows quantitative results for 3D dimension estima-
tion. We achieve high accuracy across all categories.

X y z

Median Absolute Error ~ 0.022  0.015 0.014

Table 1: 3D dimension estimation errors on Pascal3D+. We
report the mean performance across all categories.
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Figure 1: We use our predicted 6-DoF pose and 3-DoF di-
mensions to refine the alignment between the object and a
rendering. Left: A detected object, which is not centered
on the image window. Middle: A rendering which just uses
our predicted 3-DoF rotation. Right: A rendering which
uses our predicted 6-DoF pose and 3-DoF dimensions.
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Figure 2: Qualitative results for 3D pose estimation and 3D model retrieval from ShapeNet given images from Pascal3D+ for
all twelve categories. For each category, we show: the query RGB image; the depth image and RGB rendering of the ground
truth 3D model from Pascal3D+ under the ground truth pose from Pascal3D+; the depth image and RGB rendering of our
retrieved 3D model from ShapeNet under our predicted pose.
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Figure 3: 3D pose estimation fails due to low-resolution
image windows (same image arrangement as in Fig. 2). In
fact, for more than 55% of Pascal3D+ validation detections
the longer edge of the 2D image window is smaller than
224 pixel, which is the fixed spatial input size of pre-trained
CNNs like VGG [6] or ResNet [2, 3]. If the resolution is
too low, we cannot predict an accurate 3D pose.

Figure 4: 3D pose estimation fails in difficult situations
(same image arrangement as in Fig. 2). We observe that
heavy occlusions (first row), bad illumination conditions
(second row) and difficult object poses (third and fourth
row), which are far from the poses seen during training, re-
sult in incorrect pose predictions. In the last row, we see
that not even the annotated ground truth pose is correct.

Figure 5: Objects with ambiguous poses from Pascal3D+
validation data. First row: It is impossible to differentiate
between the front and back of symmetric boats. Second
row: Tables which are ambiguous with respect to an az-
imuth rotation of 7 (first image), Z (second and third image)
or even have an axis of symmetry (fourth image).

Figure 6: 3D model retrieval results for challenging cases
where pose estimation was successful (same image arrange-
ment as in Fig. 2). The test images can exhibit fish-eye ef-
fects due to wide-angle lenses (first and second row), con-
tain deformed or demolished objects (third row), or objects
under heavy occlusions (fourth row), which disturb object
retrieval. Note however that the ground truth 3D models are
not accurate.



