
Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs
(SUPPLEMENTARY)

1. Model Details
Voxelization. We pre-process input point clouds with
voxelization subsampling by computing per-voxel mean po-
sitions and observations over a regular 3D grid (5 cm bins
for Semantic3D and 3 cm bins for S3DIS dataset). The re-
sulting semantic segmentation is interpolated back to the
original point cloud in a nearest neighbor fashion. Voxeliza-
tion helps decreasing the computation time and memory re-
quirement, and improves the accuracy of the semantic seg-
mentation by acting as a form of geometric and radiometric
denoising as well (Table 4 in main paper). The quality of
further steps is practically not affected, as superpoints are
usually strongly subsampled for embedding during learning
and inference anyway (Subsection 3.3 in the main paper).

Geometric Partition. We set regularization strength µ =
0.8 for Semantic3D and µ = 0.03 for S3DIS, which strikes
a balance between semantic homogeneity of superpoints
and the potential for their successful discrimination (S3DIS
is composed of smaller semantic parts than Semantic3D).
In addition to five geometric features f (linearity, planarity,
scattering, verticality, elevation), we use color information
o for clustering in S3DIS due to some classes being geo-
metrically indistinguishable, such as boards or doors.

STN

n
p
×

d
p

diameter

n
p
×

d
p

MLP(64,64,128,128,256)

shared shared 257× 1

m
ax

po
ol

MLP(256,64,32)

dz × 1

Figure 1: The PointNet embedding np dp-dimensional sam-
ples of a superpoint to a dz-dimensional vector.

PointNet. We use a simplified shallow and narrow Point-
Net architecture with just a single Spatial Transformer Net-
work (STN), see Figure 1. We set np = 128 and nminp =
40. Input points are processed by a sequence of MLPs

(widths 64, 64, 128, 128, 256) and max pooled to a sin-
gle vector of 256 features. The scalar metric diameter is
appended and the result further processed by a sequence
of MLPs (widths 256, 64, dz=32). A residual matrix Φ ∈
R2×2 is regressed by STN and (I + Φ) is used to transform
XY coordinates of input points as the first step. The archi-
tecture of STN is a ”small PointNet” with 3 MLPs (widths
64, 64, 128) before max pooling and 3 MLPs after (widths
128, 64, 4). Batch Normalization [1] and ReLUs are used
everywhere. Input points have dp=11 dimensional features
for Semantic3D (position pi, color oi, geometric features
fi), with 3 additional ones for S3DIS (room-normalized
spatial coordinates, as in past work [3]).

Segmentation Network. We use embedding dimension-
ality dz = 32 and T = 10 iterations. ECC-VV is used
for Semantic3D (there are only 15 point clouds even though
the amount of points is large), while ECC-MV is used for
S3DIS (large number of point clouds). Filter-generating
network Θ is a MLP with 4 layers (widths 32, 128, 64, and
32 or 322 for ECC-VV or ECC-MV) with ReLUs. Batch
Normalization is used only after the third parametric layer.
No bias is used in the last layer. Superedges have df = 13
dimensional features, normalized by mean subtraction and
scaling to unit variance based on the whole training set.

Training. We train using Adam [2] with initial learning
rate 0.01 and batch size 2, i.e. effectively up to 1024 super-
points per batch. For Semantic3D, we train for 500 epochs
with stepwise learning rate decay of 0.7 at epochs 350, 400,
and 450. For S3DIS, we train for 250 epochs with steps at
200 and 230. We clip gradients within [−1, 1].

2. CRF-ECC
In this section, we describe our adaptation of CRF-RNN

mean field inference by Zheng et al. [6] for post-processing
PointNet embeddings in SPG, denoted as unary potentials
Ui here.

The original work proposed a dense CRF with pairwise
potentials Ψ defined to be a mixture of m Gaussian kernels
as Ψij = µ

∑
m wmKm(Fij), where µ is label compati-



bility matrix, w are parameters, and K are fixed Gaussian
kernels applied on edge features.

We replace this definition of the pairwise term with a
Filter generating network Θ [4] parameterized with weights
We, which generalizes the message passing and compati-
bility transform steps of Zheng et al. . Furthermore, we use
superedge connectivity E instead of assuming a complete
graph. The pseudo-code is listed in Algorithm 1. Its output
are marginal probability distributions Q. In practice we run
the inference for T = 10 iterations.

Algorithm 1 CRF-ECC

Qi ← softmax(Ui)
while not converged do

Q̂i ←
∑

j|(j,i)∈E Θ(Fji,·;We)Qj

Q̆i ← Ui − Q̂i

Qi ← softmax(Q̆i)
end while

3. Extended Ablation Studies
In this section, we present additional set of experiments

to validate our design choices and present their results in
Table 1.

a) Spatial Transformer Network. While STN makes
superpoint embedding orientation invariant, the relationship
with surrounding objects are still captured by superedges,
which are orientation variant. In practice, STN helps by 4
mIoU points.

b) Geometric Features. Geometric features fi are com-
puted in the geometric partition step and can therefore be
used in the following learning step for free. While Point-
Nets could be expected to learn similar features from the
data, this is hampered by superpoint subsampling, and
therefore their explicit use helps (+4 mIoU).

c) Sampling Superpoints. The main effect of subsam-
pling SPG is regularization by data augmentation. Too
small a sample size leads to disregarding contextual infor-
mation (-4 mIoU) while too large a size leads to overfitting
(-2 mIoU). Lower memory requirements at training is an
extra benefit. There is no subsampling at test time.

d) Long-range Context. We observe that limiting the
range of context information in SPG harms the perfor-
mance. Specifically, capping distances in Gvor to 1 m (as
used in PointNet [3]) or 5 m (as used in SegCloud1 [5])
worsens the performance of our method (even more on our
Semantic 3D validation set).

e) Input Gate. We evaluate the effect of input gating
(IG) for GRUs as well as LSTM units. While a LSTM unit
achieves higher score than a GRU (-3 mIoU), the proposed

1Furthermore, SegCloud divides the inference into cubes without over-
lap, possibly causing inconsistencies across boundaries.

a) Spatial transf. no yes
mIoU 58.1 62.1

b) Geometric features no yes
mIoU 58.4 62.1

c) Max superpoints 256 512 1024
mIoU 57.9 62.1 60.4

d) Superedge limit 1 m 5 m ∞
mIoU 61.0 61.3 62.1

e) Input gate LSTM LSTM+IG GRU GRU+IG
mIoU 61.0 61.0 57.5 62.1

f) Regularization µ 0.01 0.02 0.03 0.04
# superpoints 785 010 385 091 251 266 186 108
perfect mIoU 90.6 88.2 86.6 85.2

mIoU 59.1 59.2 62.1 58.8
g) Superpoint size 1-40 40-128 128-1000 ≥ 1000

proportion of points 7% 14% 27% 52%

Table 1: Ablation study of design decisions on S3DIS (6-
fold cross validation). Our choices in bold.

Model mAcc mIoU
Best 73.0 62.1

no mean offset 72.5 61.8
no offset deviation 71.7 59.3
no centroid offset 74.5 61.2

no len/surf/vol ratios 71.2 60.7
no point count ratio 72.7 61.7

Table 2: Ablation study of superedge features on S3DIS (6-
fold cross validation).

IG reverses this situation in favor of GRU (+1 mIoU). Un-
like the standard input gate of LSTM, which controls the
information flow from the hidden state and input to the cell,
our IG controls the input even before it is used to compute
all other gates.

f) Regularization Strength µ. We investigate the bal-
ance between superpoints’ discriminative potential and their
homogeneity controlled by parameter µ . We observe that
the system is able to perform reasonably over a range of
SPG sizes.

g) Superpoint Sizes. We include a breakdown of su-
perpoint sizes for µ = 0.03 in relation to hyperparameters
nminp = 40 and np = 128, showing that 93% of points are
in embedded superpoints, and 79% in superpoints that are
subsampled.

Superedge Features. Finally, in Table 2 we evaluate
empirical importance of individual superedge features by
removing them from Best. Although no single feature is
crucial, the most being offset deviation (+3 mIoU), we re-
mind the reader than without any superedge features the net-
work performs distinctly worse (NoEdgeFeat, -22 mIoU).
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Figure 2: Histogram of points contained in superpoints of
different size (in log scale) on the full S3DIS dataset. The
embedding threshold nminp and subsampling threshold np
are marked in red.

4. Video Illustration
We provide a video illustrating our method and qual-

itative results on S3DIS dataset, which can be viewed at
https://youtu.be/Ijr3kGSU_tU.
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