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1. Objective functions

In this section, we provide complete mathematical
expressions for each of the three terms in our loss func-
tion, following the notation defined in Section 3 of the main
paper and the assumption that no training data is available
in subdomain Σ11.

1.1. Adversarial loss

For generator G1 and discriminator D10, for example,
the adversarial loss is expressed as:

Ladv(G1, D10,Σ00,Σ10) = Eσ10∼P10
[logD10(σ10)]

+Eσ00∼P00
[log(1−D10(G1(σ00)))]

(1)

where the generator G1 and discriminator D10 are
learned to optimize a minimax objective such that

G∗1 = arg min
G1

max
D10

Ladv(G1, D10,Σ00,Σ10) (2)

For generator G2 and discriminator D01, the adversarial
loss is expressed as:

Ladv(G2, D01,Σ00,Σ01) = Eσ01∼P01 [logD01(σ01)]

+Eσ00∼P00 [log(1−D01(G2(σ00)))]
(3)

For generator F1 and discriminator D00, the adversarial
loss is expressed as:

Ladv(F1, D00,Σ10,Σ00) = Eσ00∼P00
[logD00(σ00)]

+Eσ10∼P10
[log(1−D00(F1(σ10)))]

(4)

For generator F2 and discriminator D00, the adversarial
loss is expressed as:

Ladv(F2, D00,Σ01,Σ00) = Eσ00∼P00
[logD00(σ00)]

+Eσ01∼P01
[log(1−D00(F2(σ01)))]

(5)

The overall adversarial loss LADV is the sum of these four
terms.

LADV =Ladv(G1, D10,Σ00,Σ10)

+ Ladv(G2, D01,Σ00,Σ01)

+ Ladv(F1, D00,Σ10,Σ00)

+ Ladv(F2, D00,Σ01,Σ00)

(6)

1.2. Extended cycle-consistency loss

Following our discussion in Section 3.2 of the main
paper, for any data sample σ00 in subdomain Σ00, a
distance-4 cycle consistency constraint is defined in the
clockwise direction (F2 ◦F1 ◦G2 ◦G1)(σ00) ≈ σ00 and in
the counterclockwise direction (F1 ◦F2 ◦G1 ◦G2)(σ00) ≈
σ00. Such constraints are implemented by the penalty func-
tion:

Lcyc4(G,F,Σ00)

= Eσ00∼P00 [‖(F2 ◦ F1 ◦G2 ◦G1)(σ00)− σ00‖1]

+ Eσ00∼P00 [‖(F1 ◦ F2 ◦G1 ◦G2)(σ00)− σ00‖1].
(7)



Similarly, Lcyc4(G,F,Σ01) is defined as:

Lcyc4(G,F,Σ01)

= Eσ01∼P01 [‖(F1 ◦G2 ◦G1 ◦ F2)(σ01)− σ01‖1]

+ Eσ01∼P01 [‖(G2 ◦ F1 ◦ F2 ◦G1)(σ01)− σ01‖1].
(8)

Finally, Lcyc4(G,F,Σ10) is defined as:

Lcyc4(G,F,Σ10)

= Eσ10∼P10
[‖(G1 ◦ F2 ◦ F1 ◦G2)(σ10)− σ10‖1]

+ Eσ10∼P10
[‖(F2 ◦G1 ◦G2 ◦ F1)(σ10)− σ10‖1].

(9)

Let LCY C4 denotes the sum of these three terms:

LCY C4 =Lcyc4(G,F,Σ00) + Lcyc4(G,F,Σ01)

+ Lcyc4(G,F,Σ10)
(10)

The overall cycle consistency loss LCY C is defined as:

LCY C = LCY C2 + LCY C4 (11)

where LCY C2 is the sum of all pairwise distance-2 cycle
consistency losses as described in Section 3.2 of the main
paper.

1.3. Commutative loss

Following our discussion in Section 3.3 of the main
paper, for any data sample σ00 in subdomain Σ00, we intro-
duce a constraint (G2 ◦G1)(σ00) ≈ (G1 ◦G2)(σ00) imple-
mented by the penalty function:

Lcomm(G1, G2,Σ00)

=Eσ00∼P00
[‖(G2 ◦G1)(σ00)− (G1 ◦G2)(σ00)‖1]

(12)

Similarly, Lcomm(G1, F2,Σ01) is defined as:

Lcomm(G1, F2,Σ01)

=Eσ01∼P01 [‖(F2 ◦G1)(σ01)− (G1 ◦ F2)(σ01)‖1]
(13)

and Lcomm(F1, G2,Σ10) as:

Lcomm(F1, G2,Σ10)

=Eσ10∼P10
[‖(G2 ◦ F1)(σ10)− (F1 ◦G2)(σ10)‖1]

(14)

The overall commutative loss LCOMM is the sum of the
three terms.

LCOMM =Lcomm(G1, G2,Σ00) + Lcomm(G1, F2,Σ01)

+ Lcomm(F1, G2,Σ10)
(15)

The overall loss function is as defined in Equation 5 in
Section 3.4 of the main paper.

2. Additional implementation details

In this section we provide additional implementation
details to reproduce our results. For all three discrimina-
tors, we use the architecture adapted from Kim et al. [4]
which contains 5 convolution layers with 4×4 filters where
the first four are each followed by a leaky ReLU. Compared
to the PatchGAN used in Zhu et al. [7], the discriminator
network takes 64x64x3 input images and output a scalar for
each image. For all the generators, we use the architecture
adapted from Zhu et al [7], which contains 2 convolution
layers with stride 2, 6 residual blocks and 2 fractionally-
strided convolution layers with stride 1

2 . We use batch
normalization for both the discriminator network and the
generator network.

At the training stage, we apply the algorithm from
Arjovsky et al. [1] for an alternative adversarial training.
We use Adam optimizer [5] with an initial learning rate
of 0.0002 at the first 150 epochs, followed by a linearly
decaying learning rate for the next 150 epochs as the rate
goes to zero. We set µ = λ = 10 and we also include an
identity loss component [7] with weight 10. In particular for
the experiment involving two concepts with greater differ-
ence (i.e., “handbag vs. shoe” and “color vs. edge”) , we
include additional distance-3 adversarial components. For
each training sample in Σ00, the synthetic image generated
by sequentially applying (G1, G2, F1) and (G2, G1, F2) are
discriminated from real data in the corresponding output
subdomains Σ01 and Σ10 respectively. To compare results
of the proposed method to baseline CycleGANs [7], we
consider two CycleGAN models each between two adjacent
subdomains in our proposed framework, which are trained
separately using the same network architecture of discrimi-
nators and generators as described above.

3. Additional results

In Figures 1 through 3, we provide additional image
synthesis outputs of the proposed ConceptGAN. In
Figure 4, we provide additional illustrations of improve-
ment in face verification with augmented data generated by
ConceptGAN. In Figures 5 and 6, we show additional qual-
itative results demonstrating the transferability of concepts
learned using ConceptGAN to independent test datasets
LFW [6] and MS-Celeb-1M [2].

In Table 3 in the main paper where we show face veri-
fication results for 3 concepts, we adopted a specific set
of paths in our graph using which the augmented data,
8 images in total, one corresponding to each of the 8
vertices in our cyclic graph, was generated. To show that
this is not a critical constraint, we repeat this experiment
with multiple randomly chosen set of paths to generate
the augmented data, again, 8 images in total as above.
The average results over these multiple trials are shown
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G1G2

G1: + eyeglasses; G2: + bangs; F1: - eyeglasses; F2: - bangs

Test data Test data Test dataSynthetic outputs Synthetic outputs Synthetic outputs

no training data no training data no training data(a) (b) (c)

Figure 1: Image translation and synthesis conditional on concepts “bangs” and ”eyeglasses”. Each panel in column (a) demonstrates the
clockwise cycle consistency where σ00,G1(σ00), (G2 ◦G1)(σ00), (F1 ◦G2 ◦G1)(σ00), (F2 ◦F1 ◦G2 ◦G1)(σ00) are shown in sequence,
from left to right. Each panel in column (b) demonstrates the counter-clockwise cycle consistency where σ00, G2(σ00), (G1 ◦G2)(σ00),
(F2 ◦ G1 ◦ G2)(σ00), (F1 ◦ F2 ◦ G1 ◦ G2)(σ00) are shown in sequence, from left to right. Each panel in column (c) demonstrates the
commutative property of the concept composition where σ00,G1(σ00),G2(σ00), (G2 ◦G1)(σ00), (G1 ◦G2)(σ00) are shown in sequence,
from left to right. Synthesis results obtained in the subdomains where no training data is available are highlighted in yellow boxes.

G1 G2 F1 F2
G2 G1 F2 F1 G1 G2

G1G2

G1: sunny-to-cloudy; F1: cloudy-to-sunny; G2: day-to-night; F2: night-to-day

Test data Test data Test dataSynthetic outputs Synthetic outputs Synthetic outputs

no training data no training data no training data(a) (b) (c)

Figure 2: Image translation and synthesis conditional on scene attributes ”day/night” and ”sunny/cloudy”. Each panel in column (a)
demonstrates the clockwise cycle consistency where σ00, G1(σ00), (G2 ◦ G1)(σ00), (F1 ◦ G2 ◦ G1)(σ00), (F2 ◦ F1 ◦ G2 ◦ G1)(σ00)
are shown in sequence, from left to right. Each panel in column (b) demonstrates the counter-clockwise cycle consistency where σ00,
G2(σ00), (G1 ◦G2)(σ00), (F2 ◦G1 ◦G2)(σ00), (F1 ◦F2 ◦G1 ◦G2)(σ00) are shown in sequence, from left to right. Each panel in column
(c) demonstrates the commutative property of the concept composition where σ00, G1(σ00), G2(σ00), (G2 ◦ G1)(σ00), (G1 ◦ G2)(σ00)
are shown in sequence, from left to right. Synthesis results obtained in the subdomains where no training data is available are highlighted
in yellow boxes.



Test data
Synthetic outputs over all possible permutations of 3 concepts learned in two experiments: + eyeglasses, + smile, + bangs

Subdomain with no training data 

Figure 3: Image synthesis in a zero-shot subdomain by composing three concepts (smile, eyeglasses, bangs) learned in two separate
experiments. Concept mappings with respect to “eyeglasses” is learned in each of two experiments therefore 2 × (3!) = 12 different
compositions of mappings available to translate images labeled as (no smile, no eyeglasses, no bangs) to the target subdomain.

Attributes Smiling, Bangs, & Eyeglasses
Ranking Method l2 RNP SRID

Augmentation No Yes Yes
CaffeFace 10.4 10.7 13.3
VGGFace 46.7 54.7 59.3

Table 1: Rank-1 face verification results (in %) for three concepts:
no augmentation (where we use l2 distance to rank) vs. augmen-
tation with ConceptGAN (where we use the multi-shot ranking
algorithms, RNP and SRID to rank).

in Table 1, where we see: (a) improved face verification
performance with augmented data, and (b) no substantial
difference when compared to those of Table 3 in the main
paper. In Section 5.3 in the main paper, we reported abla-
tion results for the attribute classification experiment corre-
sponding to the “Bangs” and ”Eyeglasses” attributes. In
Table 2, we report complete results corresponding to this
experiment. Finally, in Figure 7, we show additional qual-
itative results for synthesizing 128 × 128 images for the
“Bangs” and “Eyeglasses” attributes. We note that in this
experiment, instead of 64× 64× 3 images, our architecture
takes 128×128×3 images as input. The only difference to
the architecture described in Section 2 is the filter size in the
last layer of the discriminator, which is changed to obtain a
scalar value as output.

4. Discussion

In this section, we provide further insight and discussion
on ConceptGAN. In particular, while we do not make any

assumptions on the type of concepts to be learned, except
for encouraging a commutative composition, the symmetric
design of our model suggests that training may be chal-
lenging in cases where the two concepts are greatly imbal-
anced. As an example, consider the experiment involving
the concepts “handbag vs. shoe” and “color vs. edge”,
which are of markedly different types. As shown in Figure 8
panel (a), it is harder to achieve a semantically mean-
ingful composition in subdomainΣ11 by composing pairs of
concepts in one particular order than the other, i.e., G2 ◦G1

gives better performance when compared to G1 ◦ G2. In
such cases, the results in subdomain Σ11 may reflect trans-
lation with respect to only one concept instead of compo-
sition of the two concepts. To achieve plausible synthesis
as reported in Figures 1 and 3 of the main paper and shown
in panel (b) of Figure 8, we address the issue by further
constraining the system with additional distance-3 adver-
sarial constraints.

5. Generalizing ConceptGAN
This section provides an extended discussion on a prin-

cipled generalization of our framework to n >= 1 concepts
under the assumptions that concepts have distinct states and
that they are not mutually inhibiting. We do not necessarily
need to capture the universe of concepts in the data, i.e. all
concepts in existence, as long as the domain mapping for
each known concept can be learned from data.

5.1. Assumption: Concepts have distinct states

More precisely we assume that each sample x has a
likelihood P (x|Θ), where Θ is the universe of latent and



Classifier Val CycleGAN Full model Without LCOMM Without LCY C4

C1: “with” vs. “no” eyeglasses 98 93 98 88 31
C2: “with” vs. “no” bangs 93 61 67 68 62
Both C1 and C2 N/A 56 66 60 18

Table 2: Ablation results for classifying face images synthesized via ConceptGAN (ours) vs. CycleGAN [7]. Classifier 1 is trained and
validated with images with and without eyeglasses. Classifier 2 is trained and validated with images with and without bangs. The test set
consists of “with eyeglasses, with bangs” images only and the different orders of composing learned mappings contribute equally. Joint
classification accuracy is reported as the percentage of the images correctly classified in two tests at the same time.
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Figure 4: Qualitative illustrations of improvement in face verification performance- we show the improvement in the retrieved rank with
augmented data using the (“eyeglasses”, “bangs”) and (“eyeglasses”,“bangs”,“smiling”) attribute sets.
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G2 G1 F2 F1

G1 G2
G1G2

G1: +eyeglasses; F1: -eyeglasses G2: +bangs; F2: -bangs

Test data Test data Test dataSynthetic outputs Synthetic outputs Synthetic outputs

no training data no training data no training data(b)(a) (c)

Figure 5: Transfer of learned concepts to LFW: Image translation and conditional synthesis on face attributes “eyeglasses” and “bangs” via
direct application of models trained by CelebA data [6] on independent test dataset LFW [3].

observable variables that influence x, for instance illumina-
tion, geometry and object class. Then each concept ci ∈ C
of interest has to be attributable to a random variable ci ⊆ Θ
and ci has to be discrete. Naturally the case c = Θ is not
particularly interesting as there is only one concept in the
universe that generates the data. It is important to note that
in the general case of {c1, . . . , cn} ⊂ Θ the non-concept

variables Θ \ C may be continuous random variables and
the distribution P (x|Θ) = P (x|{C,Θ \ C}) itself may
be continuous. Without loss of generality the following
sections assume that the number of states for each concept
is two, i.e. binary concepts. Settings with more states may
be mapped by assigning binary sub-concepts corresponding
to a binary representation of the states.



G1 G2 F1 F2
G2 G1 F2 F1 G1 G2

G1G2

G1: +eyeglasses; F1: -eyeglasses G2: +bangs; F2: -bangs

Test data Test data Test dataSynthetic outputs Synthetic outputs Synthetic outputs

no training data no training data no training data(b)(a) (c)

Figure 6: Transfer of learned concepts to MS-Celeb-1M: Image translation and conditional synthesis on face attributes “eyeglasses” and
“bangs” via direct application of models trained by CelebA data [6] on independent test dataset MS-Celeb-1M [2].

Figure 7: Additional 128 × 128 synthesis results- in each panel, column 1 shows the base image in the Σ00 domain and column 2 shows
the synthesized image in the Σ11 domain.

5.2. Assumption: Concepts are mutually compat-
ible

The second simplifying assumption is that the activation
of one concept does not preclude activation of any other
concept, i.e. all combinations of concepts are physically
meaningful. This is motivated from the perspective that
it enables us to formulate a consistent optimization frame
work based on constraint cycles without special cases. It
is conceivable to impose less strict assumptions, and our
graph-based solution exposed here may yield a suitable
starting point to address the case where not all combinations
of concepts are physically meaningful.
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Figure 9: Generalizing ConceptGAN to n concepts, illustrated
with n = 3.

5.3. Generalization

The main insight in our generalization is that mutual
constraints over two concepts are sufficient to provide prin-
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constraints

Σ00
(data)

Σ10 Σ01 Σ11
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(data)
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Figure 8: Examples illustrating the limitation of the symmetric setup of ConceptGAN in case of imbalanced concepts. Four subdomains are
“color/handbag” (Σ00), “color/shoe”(Σ10), “edge/handbag”(Σ01) and “edge/shoe”(Σ11) respectively. Yellow boxes highlights synthetic
results in subdomain Σ11 where no training data is available. Panel (a) shows results without additional distance-3 adversarial constraints.
The first row provides results at an early stage of the training, where the differences between highlighted outputs suggest that in this
example, concept “color vs. edge” (G2/F2) is easier to get transferred (i.e., performs well on different input subdomains) compared to
the concept “handbag vs. shoe”(G1/F1). The second row provides examples of failed composition as training proceeds, where only the
concept that is easier to learn is reflected. Panel (b) shows results with the above-mentioned additional constraints.
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Figure 10: Green color indicates observed node, i.e., we have
data available from the underlying distribution corresponding to
the node.
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Figure 11: Concepts c1, c2, c3 defined by observing nodes 0,1,2,4,
allowing primary inference of nodes 3,5,6, and secondary infer-
ence of node 7.

cipled approximations to generating samplers from the
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Figure 12: Concepts c1, c2, c3 defined by observing nodes 0,4,6,7,
allowing primary inference of nodes 2,5, and secondary inference
of nodes 1,3.

distribution of all concepts, even when not all concept
combinations can be observed in the data. Figure 9 illus-
trates the case n = 3 where the universe of concepts
are the binary random variables C = {c1, c2, c3} as a
graph G = (V, E) where the edges E are changes in one
binary concept and the nodes V are the 2n states of the
n latent variables. All other influence factors Θ \ C are
not shown. Each node corresponds to one possible state
over the concepts. This is where our assumption about
mutual compatibility becomes relevant, as it implies that
the graph is connected as shown, with each node having
exactly n incoming and n outgoing edges corresponding to
activating or deactivating a concept. Each concept transfer
is represented multiple times in the graph, for instance ±c3
can be observed four times. Under our assumptions, in
general each concept transfer will occur 2n−1 times in the
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Figure 13: Sketching the modes of inference for n = 4 concepts.

graph. There are two options in how to model the concept
transfer in this case: state-dependent or state-independent.
In the first case we assume that the concept transfer ±ci
is a function of its originating state, in the first case we
assume that the concept transfer is independent of the origi-
nating state. The latter leads to more constraints per concept
transfer and a smaller solution space with the first case
vice versa. For instance, in the example of figure 9, the
concept transfer +c3 may be considered state-dependent,
where we have the four separate, but related concepts
+c3|[0, 0, 0], +c3|[0, 1, 0], +c3|[1, 0, 0] and +c3|[1, 1, 0] to
learn. If we are concerned about the lack of constraints
available, we may choose to rather treat +c3 state indepen-
dent, leaving only +c3|[·, ·, 0] to be learned, where we can
aggregate all constraints over the combinations of c1 and c2.
Our method presented in this paper and the further discus-
sion assumes that the concept transfer is state-independent
and aggregates the constraints over all possible combina-
tions.

Given sets of data, each node may be observed or not as
illustrated in figure 10, where the color green indicates an
observed node. “Observed” precisely means that we have
data available that is drawn from the underlying distribu-
tion corresponding to a node. In our example three nodes
and thus three concept combinations are observable: v0 =
[c1 = 0, c2 = 0, c3 = 0], v1 = [c1 = 1, c2 = 0, c3 = 0] and
v2 = [c1 = 0, c2 = 1, c3 = 0]. We can hope to infer two
concept transfers from this, with the corresponding edges
between the observable nodes denoted by ±c1 and ±c2 in
figure 9. Applying our previous discussion on cycle consis-
tent concept learning then allows us to infer a generator for
data from node v3, indicated in brown, as there are two
concepts involved, ±c1 and ±c2. Indeed, the sub-graph

composed of the nodes v{0,1,2,3} and their corresponding
edges is exactly our proposed solution with two concepts.
Let’s now add another data set drawn from v4, as illus-
trated in figure 11, meaning that we observe the additional
concept combination corresponding to v4. This allows us to
observe ±c3 between v0 and v4. The resulting graph shows
that we can now infer also v5 and v6 by adding the two
concept constraints corresponding the the cycles (0, 2, 6, 4)
and (0, 1, 5, 4). Together with their reflections and shifts we
need to add a total of 4 ∗ 2 additional constraints per added
inferred node for complete cycle consistency. Note that so
far we have only applied our method without changing the
nature of optimizing over two concept constraints. We now
take the next step in generalization by considering node v7,
which in this particular example corresponds to all three
concepts being activated. Assuming that we indeed can
infer nodes v3,5,6, we can consider constraints that treat
them as “observed”, such as over the cycles (3, 7, 5, 1),
(5, 7, 6, 4), and (6, 7, 3, 2). This allows us in principle
to estimate samples for v7, and yields a generic template
for approximate, iterative algorithms based on a structure
graph representation of concepts and available data. To
illustrate the generic nature of this approach, figure 12
illustrates a situation where we have data from the nodes
{0, 4, 6, 7}. We then can primarily infer nodes {2, 5} and
secondarily infer nodes {1, 3}. Without loss of generality
for arbitrary n > 3 we consider the special case where
all observed concepts have one common ancestor as in
figure 11 (compared to figure 12, where this is not the case).
Then a baseline algorithm would first infer m2 primary,
then m3 secondary nodes and so on, with mk =

(
n
k

)
, and∑

kmk = 2n. Figure 13 sketches this for n = 4. It is
important to note here that one cannot escape the combina-
torial complexity of generating samplers over all concept
combinations. Nevertheless, our proposed generalization
paves the way for iterative algorithms that yield approxi-
mate solutions in polynomial time. For instance, a simple
optimization scheme may fully fix the inferred nodes at
stage k before starting to infer stage k + 1, where a more
powerful scheme may instead weigh the uncertainty of each
unobserved nodes’ estimation in the joint inference process.
The uncertainty may be proportional to the likelihood of
the node resembling its true underlying distribution. Other
factors in optimizing may include properties of the avail-
able data, where nodes with less data are less trusted. In
the general case of n >= 1, one would reasonably expect
that the uncertainty over the estimation of a sample gener-
ator increases with its nodes’ graph distance to the avail-
able observed nodes. For instance, it may be proportional to
the average distance to all observed nodes, or the minimum
distance to the next observed node.
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