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S1. Overview

This supplemental material contains two parts:

• the proofs of theoretic results in the main paper (Sec-
tion S2),

• more experimental results, including both qualitative
and quantitative results, on three video datasets (Sec-
tion S3),

S2. Proofs of Main Results

Definition 1. The diameter di of a cell CM(si), si ∈ SK ,
is the maximum Euclidean distance between pairs of points
in the cell, i.e.,

di = max
∀x,y∈CM(si)

‖x− y‖2 (S1)

Denote by p1(di) and p2(di) the two points in CM(si)
satisfying ‖p1(di)− p2(di)‖ = di.

Theorem 2. Let sm, si, sj be three generators in an
RV T (SK ,M). For the cells CM(sm), CM(si) and
CM(sj), let mm,mi,mj be their masses, s′m, s′i, s′j
be their mass centroids, respectively. For any parti-
tioning of CM(sm) into two new cells C ′(p1(dm)) and
C ′(p2(dm)), which satisfies p1(dm) ∈ C ′(p1(dm)),
p2(dm) ∈ C ′(p2(dm)), C ′(p1(dm)) ∩ C ′(p2(dm)) = ∅
and C ′(p1(dm)) ∪ C ′(p2(dm)) = CM(sm), let s′k, s′p and
s′q be the mass centroids of CM(si)∪CM(sj), C ′(p1(dm))
and C ′(p2(dm)), respectively. If ‖s′p − s′m‖2 > τm,i,j and
‖s′q − s′m‖2 > τm,i,j , where

τm,i,j =

√
mimj

mm(mi +mj)
‖s′i − s′j‖2 (S2)

then the pair of operations (S,M) : (sm, (si, sj)) →
((s′p, s

′
q), s

′
k) does not increase the tessellation energy E .
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Proof. First, we consider the change of the tessellation en-
ergy by applying a merging operation M : (si, sj) → s′k.
This operation merges CM(si) and CM(sj) into a new cell
C ′(s′k) = CM(si)∪CM(sj), whose mass centroid is s′k. A
merging operation will always increase the energy and the
energy change is:

∆Em = E(s′k, C
′(s′k))− E(si, CM(si))− E(sj , CM(sj))

=

∫
x∈C′(s′k)

‖x− s′k‖22dx−
∫
x∈CM(si)

‖x− si‖22dx

−
∫
x∈CM(sj)

‖x− sj‖22dx

=

∫
x∈CM(si)

‖x− s′k‖22dx+

∫
x∈CM(sj)

‖x− s′k‖22dx

−
∫
x∈CM(si)

‖x− si‖22dx−
∫
x∈CM(sj)

‖x− sj‖22dx

≤
∫
x∈CM(si)

‖x− s′k‖22dx+

∫
x∈CM(sj)

‖x− s′k‖22dx

−
∫
x∈CM(si)

‖x− s′i‖22dx−
∫
x∈CM(sj)

‖x− s′j‖22dx

Since s′i and s′j are the mass centroids of cells CM(si) and
CM(sj), respectively, we have∫

x∈CM(si)

‖x− s′k‖22dx−
∫
x∈CM(si)

‖x− s′i‖22dx =∫
x∈CM(si)

‖s′i − s′k‖22dx+∫
x∈CM(si)

〈x− s′i, s′i − s′k〉 dx

=

∫
x∈CM(si)

‖s′i − s′k‖22dx = mi‖s′i − s′k‖22

and∫
x∈CM(sj)

‖x− s′k‖22dx−
∫
x∈CM(sj)

‖x− s′j‖22dx =

mj‖s′j − s′k‖22



Note that s′k is the mass centroid of CM(si) ∪ CM(sj),

s′k =
mis

′
i+mjs

′
j

mi+mj
. Therefore

∆Em ≤ mi‖s′i − s′k‖22 +mj‖s′j − s′k‖22
=

mimj

mi +mj
‖s′i − s′j‖22

Second, we consider the change of the tessellation en-
ergy by applying a splitting operation S : sm → (s′p, s

′
q).

This operation splits a cell CM(sm) into two new cells
C ′(p1(dm)) and C ′(p2(dm)), whose mass centroids are s′p
and s′q , respectively. A splitting operation always decreases
the energy and the energy change is:

∆Es = E(s′p, C
′(p1(dm))) + E(s′q, C

′(p2(dm)))

− E(sm, CM(sm))

=

∫
x∈C′(p1(dm))

‖x− s′p‖22dx

+

∫
x∈C′(p2(dm))

‖x− s′q‖22dx

−
∫
x∈CM(sm)

‖x− sm‖22dx

=

∫
x∈C′(p1(dm))

‖x− s′p‖22dx

+

∫
x∈C′(p2(dm))

‖x− s′q‖22dx

−
∫
x∈C′(p1(dm))

‖x− sm‖22dx

−
∫
x∈C′(p2(dm))

‖x− sm‖22dx

≤
∫
x∈C′(p1(dm))

‖x− s′p‖22dx

+

∫
x∈C′(p2(dm))

‖x− s′q‖22dx

−
∫
x∈C′(p1(dm))

‖x− s′m‖22dx

−
∫
x∈C′(p2(dm))

‖x− s′m‖22dx

Let mp and mq be the masses of C ′(p1(dm)) and
C ′(p2(dm)), respectively. We have mp +mq = mm.

Since s′p and s′q are mass centroids of cells C ′(p1(dm))
and C ′(p2(dm)), respectively, we have

∆Es ≤ −mp‖s′p − s′m‖22 −mq‖s′q − s′m‖22

If ‖s′p − s′m‖2 ≥ τm,i,j and ‖s′q − s′m‖2 ≥ τm,i,j , then

∆Es ≤ −mp‖s′p − s′m‖22 −mq‖s′q − s′m‖22
≤ −(mp +mq)τ

2
m,i,j

= −mm
mimj

mm(mi +mj)
‖s′i − s′j‖22

= − mimj

mi +mj
‖s′i − s′j‖22

⇒∆Em + ∆Es ≤ 0

Therefore, the pair of operations (S,M) : (sm, (si, sj))→
((s′p, s

′
q), s

′
k) does not increase the tessellation energy E .

Z
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Figure S1. Illustration used for proof of Corollary 1. The shaded
area is CM(sm).

Corollary 1. Denote a voxel in the video Ξ as vi and let

mmin = min
vi∈Ξ
{V (Φ(�vi))}, (S3)

dmax = max
vi∈Ξ
{d(Φ(�vi))}, (S4)

where d(Φ(�vi)) is the diameter of Φ(�vi) ⊂ M. Let
sm, si, sj be three generators in an RV T (SK ,M) and s′m
be the mass centroid of CM(sm). Let P be the hyperplane
which passes through s′m and is perpendicular to the line
connecting p1(dm) and p2(dm). P partitions CM(sm) into
C ′(p1(dm)) and C ′(p2(dm)). If dm ≥ w( mm

mmin
τm,i,j +

dmax), wheremm = V (CM(sm)), w = max{1+λ, 1+λ
λ },

λ =
‖p1(dm)−s′m‖2
‖p2(dm)−s′m‖2

and τm,i,j is defined in Eq.(S2), then the
pair of operations (S,M) : (sm, (si, sj)) → ((s′p, s

′
q), s

′
k)

does not increase the tessellation energy E , where s′p, s′q
and s′k are the mass centroids of C ′(p1(dm)), C ′(p2(dm))
and CM(si) ∪ CM(sj), respectively.

Proof. Refer to Figure S1. We construct a local coordinate
system by defining the z-axis along the line from p1(dm)
to p2(dm). Then the hyperplane P is perpendicular to the
z-axis. Let the intersection point of z-axis and P be the
origin of the coordinate system. Since s′m, s′p and s′q are the
mass centroids of CM(sm), C ′(p1(dm)) and C ′(p2(dm))
respectively, s′m must lie on the line segment connecting s′p



and s′q . Let the z-coordinate of a point x be z(x). Then we
have

‖s′p − s′m‖2 ≥ z(s′m)− z(s′p) = −z(s′p)
= −

∫
x∈C′(p1(dm))

z(x)dx∫
x∈C′(p1(dm))

dx
= −

∫
x∈C′(p1(dm))

z(x)dx

V ol(C′(p1(dm)))

≥ (−z(p1(dm))−dmax)mmin

V ol(C′(p1(dm))) ≥ (−z(p1(dm))−dmax)mmin

mm

=
(

λ
λ+1dm − dmax

)
mmin

mm
≥ τm,i,j

Similarly, we have

‖s′q − s′m‖2 ≥
(

1
λ+1dm − dmax

)
mmin

mm
≥ τm,i,j

That completes the proof.

Theorem 3. By selecting (1 + ε)K generators, ε >

0, Algorithm 2 is a bi-criteria
(

1 + ε, 8
(

1 + 1+
√

5
2ε

))
-

approximation algorithm in expectation.

Proof. Let SoptK = {sopti }Ki=1 and {Copti }Ki=1 be the (un-
known) optimal generator set and tessellation onM, which
minimize the energy E . Let EOPT = E({(sopti , Copti )}Ki=1).
A simple adaptation of the proof in [24] (Theorem 1 and
Corollary 1) can show that for any K ′ = (1 + ε)K gen-
erators selected by Algorithm 1, the expected tessellation
energy E satisfies

E(E({(si, Ci)}K
′

i=1))

EOPT
≤ 8

(
1 +

1 +
√

5

2ε

)
(S5)

By Theorem 2, the splitting and merging operation does
not increase the energy E . Furthermore, in each step of
the Lloyd iteration process, computing the RVT and updat-
ing the positions of generators to their mass centroids do
not increase the energy E . Therefore for any tessellation
RCV T (SK′ ,M) output from Algorithm 2, its expected
tessellation energy E satisfies

E(E(RCV T (SK′ ,M))) ≤ 8

(
1 +

1 +
√

5

2ε

)
EOPT

That completes the proof.

Theorem 4. By selecting (1 + ε)K generators, 0 < ε < 1,
the time and space complexities of Algorithm 2 areO(NK)
and O(N +K), respectively.

Proof. In Algorithm 1, the initialization by Algorithm 1
(line 1) takes O(NK) time and O(N + K) space. In the
iteration (lines 3-19),

• randomly picking three generators by Algorithm 4
(line 7) takes O(N) time and space;

• both checking the splitting-merging feasibility (line 8)
and applying the splitting-merging operation (line 10)
take O(1) time and space;

• by using a local search strategy in [15], the time
and space complexities of computing/locally updating
RVT in line 4 are both O(N);

• moving all generators in RVT to corresponding mass
centroids (lines 15-17) takes O(N) time;

• storing and updating RVT takes O(N) space.

As a summary, the time and space complexities of Al-
gorithm 2 are O(NK + itermax(N + numrandN)) and
O(N + K), respectively. Since we used fixed values
itermax = 20 and numrandom = 20, the time complex-
ity reduces to O(NK). That completes the proof.

Theorem 5. If (1 + ε)K generators, 0 < ε < 1,
are selected by Algorithm 2, Algorithm 5 is (O(1), O(1))-
approximation.

Proof. By Theorem 3, selecting (1 + ε)K generators,
0 < ε < 1, makes Algorithm 2 an expected bi-criteria
(O(1), O(1))-approximation algorithm. Theorem 3.1 in
[1] states that if Algorithm 2 is an (a, b)-approximation,
the two-level Algorithm 5 is an (a, 2b + 4b(b + 1))-
approximation. Accordingly, Algorithm 5 is (O(1), O(1))-
approximation. That completes the proof.

S3. More Experimental Results
We compare our methods (CSS and streamCSS) with

seven representative methods selected in [25], including
NCut [21, 8, 7], SWA [19, 20, 5], MeanShift [17], GB [6],
GBH [10], streamGBH [26] and TSP [3]. Since CSS and
streamCSS adopt a random initialization, we report the av-
erage results of 20 initializations. The performance evalu-
ated on the BuffaloXiph dataset [4] is presented in the main
paper. In this section, we present more experimental results
on three additional video datasets, including SegTrack v2
[14], BVDS [23, 9] and CamVid [2].

Following the main paper, we use the commonly used
quality metrics pertaining to supervoxels for evaluation [3,
13, 16, 25], including:

• 3D under-segmentation error (UE3D). This met-
ric measures the space-time leakage of supervox-
els when overlapping groundtruth segments. De-
note a ground-truth segmentation of a video as G̃ =
{g̃1, g̃2, . . . , g̃l}, and a supervoxel segmentation as
S̃ = {s̃1, s̃2, . . . , s̃r}. The UE3D metric is defined
as

UE3D =

1
l

∑
g̃i∈G̃

∑
{s̃j∈S̃:V (s̃j∩g̃i)>0} V (s̃j)−V (g̃i)

V (g̃i)

(S6)
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(a) SegTrack v2 dataset
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(d) BVDS dataset
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Figure S2. Evaluation of different supervoxel results on the SegTrack v2, BVDS and CamVid datasets. CSS, streamCSS and TSP have the
best performance on these measures, i.e., the highest SA3D, the smallest UE3D and BRD, and the largest EV. These results are consistent
with the performance on the BuffaloXiph dataset (shown in the main paper).

where V (x) is the voxel number in a segment x. Equa-
tion (S6) takes the average score from all groundtruth
segments G̃. A small under-segmentation error means
that very few voxels are leaked from groundtruth seg-
ments.

• 3D segmentation accuracy (SA3D). This metric mea-
sures the fraction of groundtruth segments that is cor-
rectly covered by supervoxels. If a supervoxel s̃a coin-
cides with a groundtruth segment g̃b and the majority
part of s̃a is inside g̃b, then s̃a belongs to g̃b and their
overlapped volume is counted into the correct covered
volume of g̃b. Denote a ground-truth segmentation of
a video as G̃ = {g̃1, g̃2, ..., g̃l}, and a supervoxel seg-
mentation as S̃ = {s̃1, s̃2, ..., s̃r}. The SA3D metric is

defined as

SA3D =

1
l

∑
g̃i∈G̃

∑
{s̃j∈S̃:V (s̃j∩g̃i)≥0.5V (s̃j)}

V (s̃j∩g̃i)
V (g̃i)

(S7)

Equation (S7) takes the average score from all
groundtruth segments G̃. The score range is in [0, 1],
where a larger value means a better over-segmentation
result.

• Boundary recall distance (BRD). This metric mea-
sures the extent of groundtruth boundaries that are
correctly retrieved by supervoxel boundaries. It is
computed by averaging the distance from points on
groundtruth boundaries to the nearest points on su-
pervoxel boundaries in each frame. Denote the t-th
frame’s groundtruth segmentation as G̃t, and the t-th
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(a) SegTrack v2 dataset

0 2000 4000 6000 8000 10000
Number of supervoxels

0

0.1

0.2

0.3

0.4

C
om

pa
ct

ne
ss

GB
GBH
streamGBH
SWA

TSP
MeanShift
CSS
streamCSS

(b) BVDS dataset
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Figure S3. Compactness measures of different supervoxel results on the SegTrack v2, BVDS and CamVid datasets. CSS and streamCSS and
TSP have the best performance, i.e., the highest compactness values. These results are consistent with the performance on the BuffaloXiph
dataset (shown in the main paper).
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(a) Supervoxels clipped on frames #41, #51 and #61
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(b) Supervoxels clipped on frames #1, #11 and #21

Figure S4. Superpixels (induced by clipping supervoxels on each image frame) obtained by GB [6], GBH [10], streamGBH [26], SWA
[19, 20, 5], MeanShift [17], TSP [3] and our CSS method. Due to limited space, we only show the results of CSS here and the results of
streamCSS are illustrated in the demo video. All the methods generate approximately 1,000 supervoxels. TSP and CSS produce regular
supervoxels (and accordingly regular clipped superpixels), while other methods produce highly irregular supervoxels. Compared to TSP,
CSS generates more supervoxels in content-rich areas and fewer supervoxels in content-sparse areas.

frame’s supervoxel segmentation as S̃t. The BRD met-
ric is defined as

BRD =
1∑

t

∣∣∣B(G̃t)
∣∣∣
∑
t

∑
p∈B(G̃t)

min
q∈B(S̃t)

d(p, q)

(S8)
where B(·) returns the 2D boundaries in a frame,
d(·, ·) measures Euclidean distance between two

points, and |·| returns the number of pixels in a 2D
boundary.

• Explained variation (EV). This metric measures the
extent of supervoxels to represent voxels in the color
domain. It is defined as

EV =

∑
s̃i∈S̃(µ(s̃i)− µ) |s̃i|∑

j(xj − µ)
(S9)
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Figure S5. Superpixels (induced by clipping supervoxels on each image frame) obtained by GB [6], GBH [10], streamGBH [26], SWA
[19, 20, 5], MeanShift [17], TSP [3] and our CSS method. Due to limited space, we only show the results of CSS here and the results of
streamCSS are illustrated in the demo video. All the methods generate approximately 1,000 supervoxels. TSP and CSS produce regular
supervoxels (and accordingly regular clipped superpixels), while other methods produce highly irregular supervoxels. Compared to TSP,
CSS generates more supervoxels in content-rich areas and fewer supervoxels in content-sparse areas.

where µ is the average color of all voxels in a video,
µ(s̃i) is the average color of the supervoxel s̃i, and xj
is the color of the voxel j. The score range is in [0, 1],
where a larger value means a better representation.

The results summarized in Figure S2 show that the
performances on three datasets (SegTrack v2, BVDS and
CamVid) are consistent with that on BuffaloXiph dataset
(summarized in the main paper): CSS, streamCSS and TSP
have the best performance on these measures, i.e., the high-

est SA3D, the smallest UE3D and BRD, and the smallest
EV.

We further apply a compactness metric to measure the
regularity of supervoxels. Its formulation is given in Equa-
tions (19)-(20) in the main paper. The results are summa-
rized in Figure S3, showing that CSS and streamCSS have
the most regular shape (i.e., highest compactness values)
and these results on the three datasets are consistent with
the ones on the BuffaloXiph dataset summarized in the main
paper.



More qualitative results are illustrated in Figures S4 and
S5. By clipping supervoxels in each image frame, these re-
sults clearly show that CSS have regular shape, well capture
object boundaries in a video and are content sensitive, i.e.,
supervoxels are small in content-dense regions and large in
content-sparse regions. The content sensitive feature is due
to the characteristic that regions of high appearance and mo-
tion variance have large volumes inM. The qualitative re-
sults of streamCSS are shown in the demo video.
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