
Conditional Probability Models for Deep
Image Compression – Suppl. Material

W ⇥ H ⇥ D ⇥ Cin

W ⇥ H ⇥ Cin

Fabian Mentzer 2017-08-18 2

W 0 ⇥ H 0 ⇥ Cout

Fabian Mentzer 2017-08-18 3

2D CNN vs 3D CNN

W 0 ⇥ H 0 ⇥ D0 ⇥ Cout

Figure 7: 2D vs. 3D CNNs

3D probability classifier As mentioned in Section 3.2,
we rely on masked 3D convolutions to enforce the causality
constraint in our probability classifier P . In a 2D-CNN,
standard 2D convolutions are used in filter banks, as shown
in Fig. 7 on the left: A W ⇥ H ⇥ Cin-dimensional tensor
is mapped to a W 0 ⇥ H 0 ⇥ Cout-dimensional tensor using
Cout banks of Cin 2D filters, i.e., filters can be represented
as fW ⇥ fH ⇥ Cin ⇥ Cout-dimensional tensors. Note that
all Cin channels are used together, which violates causality:
When we encode, we proceed channel by channel.

Using 3D convolutions, a depth dimension D is intro-
duced. In a 3D-CNN, W⇥H⇥D⇥Cin-dimensional tensors
are mapped to W 0 ⇥H 0 ⇥D0 ⇥ Cout-dimensional tensors,
with fW ⇥ fH ⇥ fD⇥Cin⇥Cout-dimensional filters. Thus,
a 3D-CNN slides over the depth dimension, as shown in
Fig. 7 on the right. We use such a 3D-CNN for P , where
we use as input our W ⇥H ⇥K-dimensional feature map
ẑ, using D = K, Cin = 1 for the first layer.

ẑi

1 1 1
1 0 0
0 0 0

1 1 1
1 1 0
0 0 0

Figure 8: Left shows a grid of symbols ẑi, where the black
square denotes some context and the gray cells denote sym-
bols which where previously encoded. Right shows masks.

To explain how we mask the filters in P , consider the 2D
case in Fig. 8. We want to encode all values ẑi by iterating
in raster scan order and by computing p(ẑi|ẑi�1, . . . , ẑ1).
We simplify this by instead of relying on all previously en-
coded symbols, we use some c⇥ c-context around ẑi (black

square in Fig. 8). To satisfy the causality constraint, this
context may only contain values above ẑi or in the same
row to the left of ẑi (gray cells). By using the filter shown
in Fig. 8 in the top right for the first layer of a CNN and
the filter shown in Fig. 8 in the bottom right for subsequent
filters, we can build a 2D-CNN with a c ⇥ c receptive field
that forms such a context. We build our 3D-CNN P by gen-
eralizing this idea to 3D, where we construct the mask for
the filter of the first layer as shown in pseudo-code Algo-
rithm 1. The mask for the subsequent layers is constructed
analoguously by replacing “<” in line 7 with “”. We use
filter size fW = fH = fD = 3.

Algorithm 1 Constructing 3D Masks

1: central idx d(fW · fH · fD)/2e
2: current idx 1
3: mask fW ⇥ fH ⇥ fD-dimensional matrix of zeros
4: for d 2 {1, . . . , fD} do
5: for h 2 {1, . . . , fH} do
6: for w 2 {1, . . . , fW } do
7: if current idx < central idx then
8: mask(w, h, d) = 1
9: else

10: mask(w, h, d) = 0

11: current idx current idx + 1

With this approach, we obtain a 3D-CNN P which oper-
ates on fH⇥fW ⇥fD-dimensional blocks. We can use P to
encode ẑ by iterating over ẑ in such blocks, exhausting first
axis w, then axis h, and finally axis d (like in Algorithm 1).
For each such block, P yields the probability distribution of
the central symbol given the symbols in the block. Due to
the construction of the masks, this probability distribution
only depends on previously encoded symbols.

Multiple compression rates It is quite straightforward to
obtain multiple operating points in a single network with
our framework: We can simply share the network but use
multiple importance maps. We did a simple experiment
where we trained an autoencoder with 5 different impor-
tance maps. In each iteration, a random importance map
i was picked, and the target entropy was set to i/5 · t.
While not tuned for performance, this already yielded a
model competitive with BPG. The following shows the
output of the model for i = 1, 3, 5 (from left to right):

On the benefit of 3DCNN and joint training We note
that the points from Table 1 (where we trained different en-

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

-22%

MS-SSIM vs. bpp on Kodak

Ours (as in Fig. 1)

Ours mean of joint

Ours mean of non-joint

BPG

Ours (as in Fig. 1)

Ours mean of joint

Ours mean of non-joint

BPG

Figure 9: Performance on the Kodak dataset. See text.

tropy models non-jointly as a post-training step) are not di-
rectly comparable with the curve in Fig. 1. This is because
these points are obtained by taking the mean of the MS-
SSIM and bpp values over the Kodak images for a single
model. In contrast, the curve in Fig. 1 is obtained by fol-
lowing the approach of [14], constructing a MS-SSIM vs.
bpp curve per-image via interpolation (see Comparison in
Section 4). In Fig. 9, we show the black curve from Fig. 1,
as well as the mean (MS-SSIM, bpp) points achieved by
the underlying models (�). We also show the points from
Tab. 1 (+). We can see that our masked 3DCNN with joint
training gives a significant improvement over the separately
trained 3DCNN, i.e., a 22% reduction in bpp when compar-
ing mean points (the red point is estimated).

Non-realistic images In Fig. 10, we compare our ap-
proach to BPG on an image from the Manga1098 dataset.
We can see that our approach preserves text well enough to
still be legible, but it is not as crip as BPG (left zoom). On
the other hand, our approach manages to preserve the fine
texture on the face better than BPG (right zoom).

Visual examples The following pages show the first four
images of each of our validation sets compressed to low bi-
trate, together with outputs from BPG, JPEG2000 and JPEG
compressed to similar bitrates. We ignored all header infor-
mation for all considered methods when computing the bi-
trate (here and throughout the paper). We note that the only
header our approach requires is the size of the image and an
identifier, e.g., �, specifying the model.

Overall, our images look pleasant to the eye. We see
cases of over-blurring in our outputs, where BPG manages
to keep high frequencies due to its more local approach. An
example is the fences in front of the windows in Fig. 14, top,
or the text in Fig. 15, top. On the other hand, BPG tends to
discard low-contrast high frequencies where our approach
keeps them in the output, like in the door in Fig. 11, top,
or in the hair in Fig. 12, bottom. This may be explained by

8
http://www.manga109.org/

Ours (0.446 bpp)

BPG (0.459 bpp)

Figure 10: Comparison on a non-realistic image. See text.

BPG being optimized for MSE as opposed to our approach
being optimized for MS-SSIM.

JPEG looks extremely blocky for most images due to the
very low bitrate.

http://www.manga109.org/

Ours 0.239 bpp 0.246 bpp BPG

JPEG 2000 0.242 bpp 0.259 bpp JPEG

Ours 0.203 bpp 0.201 bpp BPG

JPEG 2000 0.197 bpp 0.205 bpp JPEG

Figure 11: Our approach vs. BPG, JPEG and JPEG 2000 on the first and second image of the Kodak
dataset, along with bit rate.

Ours 0.165 bpp 0.164 bpp BPG

JPEG 2000 0.166 bpp 0.166 bpp JPEG

Ours 0.193 bpp 0.209 bpp BPG

JPEG 2000 0.194 bpp 0.203 bpp JPEG

Figure 12: Our approach vs. BPG, JPEG and JPEG 2000 on the third and fourth image of the Kodak
dataset, along with bit rate.

Ours 0.385 bpp 0.394 bpp BPG

JPEG 2000 0.377 bpp 0.386 bpp JPEG

Ours 0.365 bpp 0.363 bpp BPG

JPEG 2000 0.363 bpp 0.372 bpp JPEG

Figure 13: Our approach vs. BPG, JPEG and JPEG 2000 on the first and second image of the Ur-
ban100 dataset, along with bit rate.

Ours 0.435 bpp 0.479 bpp BPG

JPEG 2000 0.437 bpp 0.445 bpp JPEG

Ours 0.345 bpp 0.377 bpp BPG

JPEG 2000 0.349 bpp 0.357 bpp JPEG

Figure 14: Our approach vs. BPG, JPEG and JPEG 2000 on the third and fourth image of the Ur-
ban100 dataset, along with bit rate.

Ours 0.355 bpp 0.394 bpp BPG

JPEG 2000 0.349 bpp 0.378 bpp JPEG

Ours 0.263 bpp 0.267 bpp BPG

JPEG 2000 0.254 bpp 0.266 bpp JPEG

Figure 15: Our approach vs. BPG, JPEG and JPEG 2000 on the first and second image of the Ima-
geNetTest dataset, along with bit rate.

Ours 0.284 bpp 0.280 bpp BPG

JPEG 2000 0.287 bpp 0.288 bpp JPEG

Ours 0.247 bpp 0.253 bpp BPG

JPEG 2000 0.243 bpp 0.252 bpp JPEG

Figure 16: Our approach vs. BPG, JPEG and JPEG 2000 on the third and fourth image of the Ima-
geNetTest dataset, along with bit rate.

Ours 0.494 bpp 0.501 bpp BPG

JPEG 2000 0.490 bpp 0.525 bpp JPEG

Ours 0.298 bpp 0.301 bpp BPG

JPEG 2000 0.293 bpp 0.315 bpp JPEG

Figure 17: Our approach vs. BPG, JPEG and JPEG 2000 on the first and second image of the B100
dataset, along with bit rate.

Ours 0.315 bpp 0.329 bpp BPG

JPEG 2000 0.311 bpp 0.321 bpp JPEG

Ours 0.363 bpp 0.397 bpp BPG

JPEG 2000 0.369 bpp 0.372 bpp JPEG

Figure 18: Our approach vs. BPG, JPEG and JPEG 2000 on the third and fourth image of the B100
dataset, along with bit rate.

