
Supplementary

A. Overview

This supplementary document provides more technical
details and experimental results to the main paper. Shape
retrieval experiments are demonstrated with ShapeNet
Core55 dataset in Sec. B. The time and space complexity is
analyzed in Sec. C, followed by detailed illustration of our
permutation invariant SOM training algorithms in Sec. D.
More experiments and results are presented in Sec. E.

B. Shape Retrieval

Our object classification network can be easily extended
to the task of 3D shape retrieval by regarding the classifica-
tion score as the feature vector. Given a query shape and a
shape library, the similarity between the query and the can-
didates can be computed as their feature vector distances.

B.1. Dataset

We perform 3D shape retrieval task using the ShapeNet
Core55 dataset, which contains 51,190 shapes from 55 cat-
egories and 204 subcategories. Specifically, we adopt the
dataset split provided by the 3D Shape Retrieval Contest
2016 (SHREC16), where 70% of the models are used for
training, 10% for validation and 20% for testing. Since the
3D shapes are represented by CAD models, i.e., vertices and
faces, we sample 5,000 points and surface normal vectors
from each CAD model. Data augmentation is identical with
the previous classification and segmentation experiments -
random jitter and scale.

B.2. Procedures

We train a classification network on the ShapeNet
Core55 dataset using identical configurations as our Model-
Net40 classification experiment, i.e. a SOM of size 8⇥8 and
k = 3. For simplicity, the softmax loss is minimized with
only the category labels (without any subcategory informa-
tion). The classification score vector of length 55 is used
as the feature vector. We calculate the L2 feature distance
between each shape in the test set and all shapes in the same
predicted category from the test set (including itself). The
corresponding retrieval list is constructed by sorting these
shapes according to the feature distances.

B.3. Performance

SHREC16 provides several evaluation metrics includ-
ing Precision-Recall curve, F-score, mean average precision
(mAP), normalized discounted cumulative gain (NDCG).
These metrics are computed under two contexts - macro and
micro. Macro metric is a simple average across all cate-
gories while micro metric is a weighted average according

to the number of shapes in each category. As shown in Ta-
ble 3, our SO-Net out-performs state-of-the-art approaches
with most metrics. The precision-recall curves are illus-
trated in Fig. 9, where SO-Net demonstrates the largest area
under curve (AUC). Some shape retrieval results are visual-
ized in Fig. 11.

C. Time and Space Complexity

We evaluate the model size, forward (inference) time and
training time of several point cloud based networks in the
task of ModelNet40 classification, as shown in Table 4. The
forward timings are acquired with a batch size of 8 and input
point cloud size of 1024. In the comparison, we choose the
networks with the best classification accuracy among vari-
ous configurations of PointNet and PointNet++, i.e., Point-
Net with transformations and PointNet++ with multi-scale
grouping (MSG). Because of the parallelizability and sim-
plicity of our network design, our model size is smaller and
the training speed is significantly faster compared to Point-
Net and its successor PointNet++. Meanwhile, our infer-
ence time is around 1/3 of that of PointNet++.

D. Permutation Invariant SOM

We apply two methods to ensure that the SOM is invari-
ant to the permutation of the input points - fixed initializa-
tion and deterministic training rule.

D.1. Initialization for SOM Training

In addition to permutation invariance, the initialization
should be reasonable so that the SOM training is less prone
to local minima. Suboptimal SOM may lead to many iso-
lated nodes outside the coverage of the input points. For
simplicity, we use fixed initialization for any point cloud
input although there are other initialization approaches that
are permutation invariant, e.g., principal component initial-
ization. We generate a set of node coordinates that are
uniformly distributed in an unit ball to serve as a reason-
able initialization because the input point clouds are in var-
ious shapes. Unfortunately, as shown in Fig. 10, isolated
nodes are inevitable even with uniform initialization. Iso-
lated nodes may not be associated during the kNN search,
and their corresponding node features will be set to zero,
i.e. the node features are invalid. Nevertheless, our SO-Net
is robust to small amount of invalid nodes as demonstrated
in the experiments.

We propose a simple algorithm based on potential field
methods to generate the initialization as shown in Algo-
rithm 1. S = {sj 2 R3

, j = 0, · · · ,M � 1} represents
the SOM nodes and ⌘ is the learning rate. The key idea is
to apply a repulsion force between any pair of nodes, and
external forces to attract nodes toward the origin. The pa-
rameter � is used to control the weighting between the re-

Method Micro Macro
P@N R@N F1@N mAP NDCG@N P@N R@N F1@N mAP NDCG@N

Tatsuma 0.427 0.689 0.472 0.728 0.875 0.154 0.730 0.203 0.596 0.806
Wang CCMLT 0.718 0.350 0.391 0.823 0.886 0.313 0.536 0.286 0.661 0.820
Li ViewAggregation 0.508 0.868 0.582 0.829 0.904 0.147 0.813 0.201 0.711 0.846
Bai GIFT [3] 0.706 0.695 0.689 0.825 0.896 0.444 0.531 0.454 0.740 0.850
Su MVCNN [33] 0.770 0.770 0.764 0.873 0.899 0.571 0.625 0.575 0.817 0.880
Kd-Net [18] 0.760 0.768 0.743 0.850 0.905 0.492 0.676 0.519 0.746 0.864
O-CNN [36] 0.778 0.782 0.776 0.875 0.905 - - - - -
Ours 0.799 0.800 0.795 0.869 0.907 0.615 0.673 0.622 0.805 0.888

Table 3. 3D shape retrieval results with SHREC16. Our SO-Net out-performs state-of-the-art deep networks with most metrics.

0 0.2 0.4 0.6 0.8
R

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P

Bai_GIFT
Li_ViewAggregation
Su_MVCNN
Tatsuma_DB-FMCD-FUL-LCDR
Wang_CCMLT
SO-Net

(a)

0 0.2 0.4 0.6 0.8
R

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P

Bai_GIFT
Li_ViewAggregation
Su_MVCNN
Tatsuma_DB-FMCD-FUL-LCDR
Wang_CCMLT
SO-Net

(b)

Figure 9. Precision-recall curve for micro (a) and macro (b) metrics in the 3D shape retrieval task. In both curves, the SO-Net demonstrates
the largest AUC.

Size / MB Forward / ms Train / h
PointNet [26] 40 25.3 3-6
PointNet++ [28] 12 163.2 20
Kd-Net [18] - - 16
Ours 11.5 59.6 1.5

Table 4. Time and space complexity of point cloud based networks
in ModelNet40 classification.

Figure 10. Results of SOM training with uniform initialization.
Isolated nodes are inevitable even with uniform initialization.

pulsion and attraction force, so that the resulting nodes are
within the unit ball.

Algorithm 1 Potential field method for SOM initialization
Set random seed.
Random initialization: S U(�1, 1)
repeat

for all sj 2 S do

f
wall
j �sj
f
node
j 0

for all sk 2 S, k 6= j do

f
node
j f

node
j + �

sj�sk
ksj�skk2

2

end for

end for

for all sj 2 S do

sj sj + ⌘(fwall
j + f

node
j)

end for

until converge

D.2. Batch Update Training

Instead of updating the SOM once per point, the batch
update rule conducts one update after accumulating the ef-
fect of all points in the point cloud. As a result, each SOM

update iteration is unrelated to the order of point, i.e., per-
mutation invariant. During SOM training, each training
sample affects the winner node and all its neighbors. We
define the neighborhood function as a Gaussian distribution
as follows:

wxy(x, y|p, q,�x,�y) =
exp

�
� 1

2 (x� µ)T⌃�1(x� µ)
�

p
(2⇡)2|⌃|

µ =
⇥
p q

⇤T

⌃ =

"
�
2
x 0

0 �
2
y

#
.

(6)

The pseudo code of the training scheme is shown in Al-
gorithm 2. P = {pi 2 R3

, i = 0, · · · , N � 1} and
S = {sj 2 R3

, j = 0, · · · ,M � 1} represent the input
points and SOM nodes respectively. The learning rate ⌘t

and neighborhood parameter (�x,�y) should be decreased
slowly during training. In addition, Algorithm 2 can be eas-
ily implemented as matrix operations which are highly effi-
cient on GPU.

Algorithm 2 SOM batch update rule
Initialize m⇥m SOM S with Algorithm 1
for t < MaxIter do

. Set update vectors to zero
for all sxy 2 S do

Dxy 0
end for

. Accumulate the effect of all points
for all pi 2 P do

Obtain nearest neighbor coordinate p, q

for all sxy 2 S do

wxy Eq. (6)
Dxy Dxy + wxy(pi � sxy)

end for

end for

. Conduct one update
for all sxy 2 S do

sxy sxy + ⌘tDxy

end for

t t+ 1
Adjust �x, �y and ⌘t

end for

E. More Experiments

E.1. MNIST Classification

We evaluate our network using the 2D MNIST dataset,
which contains 60,000 28 ⇥ 28 images for training and

10,000 images for testing. 2D coordinates are extracted
from the non-zero pixels of the images. In order to up-
sample these 2D coordinates into point clouds of a certain
size, e.g., 512 in our experiment, we augment the original
pixel coordinates with Gaussian noise N (0, 0.01). Other
than the acquisition of point clouds, the data augmentation
is exactly the same as other experiments using ModelNet or
ShapeNetPart. We reduce the SOM size to 4 ⇥ 4 and set
k = 4 because the point clouds are in 2D and the cloud
size is relatively small. The neurons in the shared fully
connected layers are reduced as well: 2-64-64-128-128 dur-
ing point feature extraction and (128+2)-256-512-512-1024
during node feature extraction.

Similar to 3D classification tasks, our network out-
performs existing point cloud based deep networks although
the best performance is still from the well engineered 2D
ConvNets as shown in Table 6. Despite using point cloud
representation instead of images, our network demonstrates
better results compared with ConvNets such as Network in
Network [22], LeNet5 [20].

E.2. Classification with SOM Only

There are two sources of information utilized by the SO-
Net - the point cloud and trained SOM. The information
from SOM is explicitly used when the nodes are concate-
nated with the node features at the beginning of node feature
extraction. Additionally, the SOM is implicitly utilized be-
cause point normalization, kNN search and the max pooling
are based on the nodes. We perform classification using the
SOM nodes without the point coordinates of the point cloud
to analyze the contribution of the SOM. We feed the SOM
nodes into a 3-layer MLP with MNIST, ModelNet10 and
ModelNet40 dataset. Similarly in the Kd-Net [18], experi-
ments are conducted using the kd-tree split directions with-
out point information, i.e. feeding directions of the splits
into a MLP. The results are shown in Table 5.

It is interesting that we can achieve reasonable perfor-
mance in the classification tasks by combining SOM and a
simple MLP. But there is still a large gap between this vari-
ant and the full SO-Net, which suggests that the integration
of SOM and point clouds is important. Another intriguing
phenomenon is that the SOM based MLP achieves better
results than split-based MLP. It suggests that maybe SOM
is more expressive than kd-trees in the context of classifica-
tion.

E.3. Result Visualization

To visualize the shape retrieval results, we present the
top 5 retrieval results for a few shapes as shown in Fig. 11

For the point cloud autoencoder, we present results from
two networks. The first network consumes 1024 points
and reconstructs 1280 points with the ShapeNetPart dataset
(Fig. 12), while the second one consumes 5000 points

Method Input MNIST ModelNet10 ModelNet40
Kd-Net split based MLP [18] splits 82.40 83.4 73.2
Kd-Net depth 10 [18] point 99.10 93.3 90.6
Ours - SOM based MLP SOM nodes 91.37 88.9 75.7
Ours point 99.56 94.5 92.3

Table 5. Classification results using structure information - SOM nodes and kd-tree split directions.

Method Error rate (%)
Multi-column DNN [10] 0.23

Network in Network [22] 0.47
LeNet5 [20] 0.80
Multi-layer perceptron [31] 1.60
PointNet [26] 0.78
PointNet++ [28] 0.51
Kd-Net [18] 0.90
ECC [32] 0.63
Ours 0.44

Table 6. MNIST classification results.

and reconstructs 4608 points using the ModelNet40 dataset
(Fig. 13). We present one instance for each category.

For results of object part segmentation using ShapeNet-
Part dataset, we visualize one instance per category in
Fig. 14. The inputs to the network are point clouds of size
1024 and the corresponding surface normal vectors.

Figure 11. Top 5 retrieval results. First column: query shapes. Column 2-6: retrieved shapes ordered by feature similarity.

Figure 12. Results of our ShapeNetPart autoencoder. Red points are recovered by the convolution branch and green ones are by the fully
connected branch. Odd rows: input point clouds. Even rows: reconstructed point clouds.

Figure 13. Results of our ModelNet40 autoencoder. Red points are recovered by the convolution branch and green ones are by the fully
connected branch. Odd rows: input point clouds. Even rows: reconstructed point clouds.

Figure 14. Results of object part segmentation. Odd rows: ground truth segmentation. Even rows: predicted segmentation.

