
SGAN: An Alternative Training of Generative Adversarial Networks
– Supplementary Material –

Tatjana Chavdarova and François Fleuret
Machine Learning group, Idiap Research Institute & École Polytechnique Fédérale de Lausanne

{firstname.lastname}@idiap.ch

The implementation details, as well as additional results
of experiments on toy and realistic datasets, are given in
Sections 1 and 2. In Section 3 we discuss two viewpoints of
SGAN. We use notations as in the paper (see § 4).

1. Experiments on toy datasets

1.1. Details on the implementation

For experiments conducted on toy datasets, we used sep-
arate 2·(N+1) networks. The architecture and the hyper-
parameters are as follows. Each network is a multilayer per-
ceptron (MLP) of 4 fully connected layers and LeakyReLU
non-linearity [6] with the PyTorch’s default value for the
negative slope of 0.01 [7]. The number of hidden units for
each of the layers is 512, whereas the dimension of the input
noise vector for the generator network is 100.

We use learning rate of 1·10−5, as well as the Adam op-
timization method [5]. Using RMSProp [12] as optimiza-
tion method did not give obvious improvements in our con-
ducted experiments.

1.2. Experiments

Figure 1 depicts several image pairs, of: (i) samples gen-
erated by the local generators (left); and (ii) samples from
the global one (right). The illustrated contours are obtained
with GMM Kernel Density Estimation (KDE) [10], whose
bandwidth is cross-validated. We used sample of pg of size
500 (in Figure 1, N denotes the sample size). C in Figure 1
denotes the Coverage metric [13].

Figure 4 depicts experiment in which the parameters of
the global pair are updated after each update of a local pair.

2. Experiments on real-world datasets

2.1. Details on the implementation

Regarding experiments on real-world applications, we
considered: (i) using separate 2·(N+1) networks; as well
as (ii) using parameter sharing of the networks. In the lat-
ter, approximately half of the parameters of each network

are shared among the corresponding other N networks (dis-
criminators or generators). To distinguish the two, in the
sequel we denote the former and the latter case as N-S- and
N-SW-, respectively. For DCGAN, we recommend using
separate networks, as sharing parameters makes the gener-
ators to produce similar samples, thus the performance gain
of SGAN can be marginal.

We used learning rate of 1·10−5, and a batch size of 50
and 64 for (FASHION)MNIST and the rest of the datasets,
respectively. Unless otherwise stated, we used the Adam
optimizer [5] whose hyperparameters (one parameter used
for computing running averages of gradient and another for
its square) we fixed to 0.5 and 0.999, as in [9].

Implementation of the experiments on image datasets.
For MNIST we did experiments using both MLPs and
CNNs for the generators and the discriminators. In the for-
mer case, the architectures were almost identical to those
used for the toy experiments, except that the first layer was
adjusted for input space of 28×28. In the latter case, we
used input space of 28×28 and we started with the DC-
GAN implementation [9] and changed it accordingly to the
input space. In particular, we reduced the number of 2D
transposed convolution layers from 5 to 4 and adjusted the
hidden layers’ sizes accordingly to the dimensions used for
the real data space.

For CIFAR10 unless otherwise emphasized, we used
32×32 image space. For the rest of the image datasets–
unless otherwise stated, we used 64×64 input space and
the original DCGAN [9] architecture, as provided by the
authors. The implementation of DCGAN [9] uses Batch
Normalization layers [4].

Implementation of the experiments on one Billion Word
Benchmark. We started from the provided implementa-
tion of [2] and implemented our method. In particular, the
character-level generative language model is implemented
as a 1D CNN using 4 ResNet blocks [3], which network
maps a latent vector into a sequence of one-hot character

1



Iteration 1

Iteration 8

Iteration 40

Iteration 125

Figure 1: 5-S-WGAN on the 10-GMM dataset. Samples
from the five local generators and from the global generator,
are shown on the left (in separate color) and on the right (in
red color), respectively. See § 1.2.

vectors of dimension 32. The discriminator is also a 1D
CNN, that takes as input sequences of such character em-
beddings of size 32.

As optimization method we used RMSProp [12].

Separate networks. In Figure 3 we show the Inception
score [11] (using its original implementation in Tensor-
Flow [1]), of the global generator and the local generators.

In Figure 2 we show samples of 5-S-DCGAN on

Figure 2: Samples of DCGAN and 5-S-DCGAN on
FASHION-MNIST taken at the 6000-th iteration, on the
left and right, respectively. The input dimension is 28×28.

0 2000 4000 6000 8000 10000
Iterations

1

2

3

4

5

6

In
ce

pt
io

n 
Sc

or
e

Local generators
Global generator

Figure 3: 10-S-DCGAN, on CIFAR10 (best seen in color).
We plot the Inception Score [11] of the global generator
(orange) as well as the scores of the local generators (blue).
The input dimension is 32×32.

FASHION-MNIST (on the right), as well as of DCGAN
(on the left). Figures 5 & 6 depict samples using DRAGAN
and DCGAN, respectively. We see that the global generator
converges much earlier then the local ones.

Shared parameters. In Figure 9 we show samples
when training DRAGAN and 5-SW-DRAGAN on LSUN-
bedroom with input dimension of 64×64. Finally, in Fig-
ure 10 we show samples when training on the Billion Word
dataset.

3. Different viewpoints of SGAN
Connecting SGAN to Actor-critic methods. In [8] the
authors argue that at an abstract level GANs find similarities
with actor-critic (AC) methods, which are widely used in re-
inforcement learning. Namely, the two have a feed-forward

2



Iteration 1 Iteration 5

Iteration 10 Iteration 15

Iteration 60 Iteration 80

Iteration 100 Iteration 300

Figure 4: 5-S-WGAN experiment on the 8-GMM toy dataset (best seen in color). Real data samples are illustrated in orange.
In each image pair, we illustrate samples from the five local generators and from the global generator, on the left (in separate
color) and on the right (in green), respectively. The displayed contours represent the level sets of the discriminators D and
Dmsg–illustrated on the left and right of each image pair, respectively, where yellow is low and purple is high.

3



Global generator Local generator #1 Local generator #2

Local generator #3 Local generator #4 Local generator #5

Figure 5: 5-S-DRAGAN on CIFAR10 at 40·103-th itera-
tion, and 32×32 real data space.

Global generator Local generator #1 Local generator #2

Local generator #3 Local generator #4 Local generator #5

Figure 6: 5-S-DCGAN on CelebA at 1·103-th iteration, and
32×32 real data space.

Global generator Local generator #1 Local generator #2

Local generator #3 Local generator #4 Local generator #5

Figure 7: Samples of the generators of 5-S-DRAGAN on
the CelebA dataset at the 50·103-th iteration. The input di-
mension is 64×64.

Global generator Local generator #1 Local generator #2

Local generator #3 Local generator #4 Local generator #5

Figure 8: Samples of the generators of 5-S-DCGAN on the
LSUN-bedroom dataset at the 100·103-th iteration. The
input dimension is 64×64.

model which either takes an action (AC) or generates a sam-
ple (GAN). This acting/generating model is trained using a
second one. The latter model is the only one that has direct
access to information from the environment (AC) or the real
data (GAN), whereas the former has to learn based on the
signals from the latter. We refer the interested reader to [8]
which further elaborates the differences and finds connec-
tions that both the methods encounter difficulties in train-
ing.

We make use of the graphical illustration proposed in [8]
of the structre of the GAN algorithm illustrated in Fig-
ure 11a, and we extend it to illustrate how SGAN works,

4



DRAGAN 5-SW-DRAGAN

Figure 9: DRAGAN and 5-SW-DRAGAN on LSUN-
bedroom at the 1000-th, 5·103-th, 10·103-th and 14·103-
th iteration, from top to bottom row, respectively. Using
64×64 real data space.

Figure 11b, where nodes with index i can be multiple.
Empty circles represent models with a distinct loss function.
Filled circles represent information from the environment.
Diamonds represent fixed functions, both deterministic and
stochastic. Solid lines represent the flow of information,
while dotted lines represent the flow of gradients used by
another model. In SGAN, D0 is being trained with samples
from the multiple generators whose input is in the real-data
space. For clarity, we omited Dmsg in the illustration–used
to train G0, as the arrows already indicate that these two
“global” models do not affect the ensemble.

Game theoretic interpretation. We can define a game
that describes the training of G0 and D0 in the SGAN
framework as follows. Let us consider a tuple (P,A, u),
where P = {G,D} is the set of new players that we in-
troduce. Let us assume that G and D, at each iteration can

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

The Larntare F bucnt 1h setirder
The tielirc indian on orabo stir
We dola wan Fobkbomn hrcas and 8
Tod letrocsix r telt car rntr ce
Then on s indent on leWand ghis
Ja candt conteltirt in ald do ce
Gaid nochir Weabsilan of ansany
The ticosgose arc on Mesinntelat
More wucarcanosnped rochusroe t‘
They derato raEyand soalceatecst
De Ths chsrc s aeareP thel ea t

" S4vvvoFlnls anr ans ffrcinns s
Thon taa forinint ssroso siwfd f
Hothst bffld ’nvlonyoiar" cov sh
Woisi’n fof Monisg dhak N‘f fnv
ThD fas ong fafpn so n wns is of
D" wiay wyd alvriMbnlor M nld ff
DDd4y vooc onl vocfay w s offo f
" c4Df co noy soonlono ans war
ln wns bfrfncorfiw Thofv lnnd fo
Dy wad Dld at N fovl dcy fot aor
ThD doDn bacd d vffnonlo anfofin
Th’ toits isg thid st hsgo ffffs
" coracgod Mfopf lny thisg aff

The conareed same ming tay spid
Then the gioncolly the can id co
She beme lant arecong nelode .
It taecanting the they trehos so
In the later asterol antarlist n
Sion ot tndy ttin an os pomcerer
The pither canned Sblets castery
They BastitiBented tome man angu
I lant taot suncedrthet prourpli
And Biecon eels acecount tre Car
This tain Datertlals comegel yan
Is the Woilg ate costort thab f
Thin Incin is Inlasar cumand mot

Figure 10: Snippets from WGAN (left) and 5-SW-WGAN
(right) on the One Billion Word Benchmark, taken at the
700-th and 2500-th iteration (top and bottom row, respec-
tively).

(a) GAN training [8] (b) SGAN training

Figure 11: Graphical representations [8] of the information
flow structures of GAN and SGAN training. See § 3.

select among the elements of D and G, respectively. Hence,
A = (Ag, Ad) have a finite set of N actions.

Such “top level players” in SGAN assign uniform distri-
bution over their actions, more precisely both G and D sam-
ple from the elements ofD and G respectively, with uniform
probability. To connect to classical training, let us assume
that G and D fix their choice to one element of D and G re-
spectively, i.e. with probability one they sample from a sin-
gle generator/discriminator. The trained networks G0 and
Gi, as well as D0 and Dj , with i and j being the selected
choice of G and D respectively, are identical in expecta-
tion. Finally, rather than predefining the uniform sampling
in SGAN, incorporating estimations of the actions’ pay-off
u = (ug, ud) could prove useful for training (G0, D0).

5



References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Van-
houcke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org. 2

[2] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of Wasserstein GANs. In
Advances in Neural Information Processing Systems 30, pages 5767–5777. 2017. 1

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385,
2015. 1

[4] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift.
In Proceedings of the 32Nd International Conference on International Conference on Machine Learning - Volume 37,
ICML’15, pages 448–456. JMLR.org, 2015. 1

[5] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014. 1
[6] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural network acoustic models. 2013. 1
[7] A. Paszke, S. Gross, S. Chintala, and G. Chanan. PyTorch. https://github.com/pytorch/pytorch, 2017.

1
[8] D. Pfau and O. Vinyals. Connecting generative adversarial networks and actor-critic methods. CoRR, abs/1610.01945,

2016. 2, 4, 5
[9] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adver-

sarial networks. CoRR, abs/1511.06434, 2015. 1
[10] M. Rosenblatt. Remarks on some nonparametric estimates of a density function. Ann. Math. Statist., 27(3):832–837,

09 1956. 1
[11] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, and X. Chen. Improved techniques for

training GANs. In Advances in Neural Information Processing Systems 29, pages 2234–2242, 2016. 2
[12] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a running average of its recent magnitude.

COURSERA: Neural Networks for Machine Learning, 2012. 1, 2
[13] I. O. Tolstikhin, S. Gelly, O. Bousquet, C.-J. Simon-Gabriel, and B. Schölkopf. AdaGAN: Boosting generative models.

In Advances in Neural Information Processing Systems 30. 2017. 1

6

https://github.com/pytorch/pytorch

