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A. Detailed results for Section 4.2: binary seg-
mentation on Pascal VOC

Figure A.1 shows segmentations obtained for binary
foreground-background segmentation on Pascal VOC under
different training losses, after finetuning a base multi-class
classification network for a specific class. We see that the
Lovász hinge for the Jaccard loss tends to fill gaps in seg-
mentation, recover small objects, and lead to a more sensible
segmentation globally.

Table A.1 presents detailed scores for this binary seg-
mentation task. We notice a clear improvement of the per
image-IoU by optimizing with the Jaccard loss. Moreover,
the results are in agreement with the intuition that the best
performance for a given loss on the validation set is achieved
when training with that loss. In some limited cases (boat,
bottle) the performance of the base multi-class network is
actually higher than the fine-tuned versions. Our understand-
ing of this phenomenon is that the context is particularly
important for these specific classes, and the absence of label
for the other classes during finetuning impedes the predictive
ability of the network. Additionally, Figure A.2 presents an
instance of convergence curves of this binary network, under
the different losses considered.

Comparison to prior work [22] propose separately ap-
proximating the intersection

I '
p∑
i=1

Fi [y∗i = 1], (A.1)

using the Iverson bracket notation, and the union

U '
n∑
i=1

(pi + [y∗i = 1])− I (A.2)

for optimizing the binary IoU ' I/U . We compared the
validation image mIoU under the loss of [22] and the binary

Lovász hinge, for all the categories of binarized Pascal VOC,
in the setting of section 4.2. We chose for [22] the best-
scoring among 3 learning rates. As seen in Table A.2 the
proxy loss in [22] does not reach the performance of our
method. Since [22] uses the same approximation “batch–
IoU ' dataset–IoU”, these observations extend to the binary
dataset–IoU measure.

B. Supplementary experiment: IBSR brain
segmentation

Data and Model In order to test the Lovász-Softmax loss
on a different type of images, we consider the publicly avail-
able dataset provided by the Internet Brain Segmentation
Repository (IBSR) [29]. This dataset is composed of Mag-
netic Resonance (MR) image data of 18 different patients
annotated for segmentation. For this segmentation task, we
used a model based on Deeplab [5] adapted to IBSR by Shak-
eri et al. [30]. Our evaluation follows the same procedure
as in the cited paper: a subset of 8 subcortical structures is
first selected: left and right thalamus, caudate, putamen, and
pallidum, then 3 folds composed of respectively 11, 1, and 6
train, validation, and test volumes are used for training and
testing. Table B.1 details the model architecture to which we
add batch normalization layers between the convolutional
layers and their ReLU activations.

Settings Similarly to [30], we consider the dataset com-
posed of the 256 axial brain slices of each volume rather than
using the 3D structure of the data. This dataset is composed
of 256×128 grayscale images. Moreover, we discard the im-
ages that contain only the background class during training.
For each fold, the training data is then limited to ≈ 800–900
slices. Training is done with stochastic gradient descent and
a learning rate schedule to exponentially decrease from 10−1

to 10−3 over 35 epochs with either the cross-entropy loss
as in the original model, or the Lovász-Softmax loss (the
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Figure A.1: Example binary segmentations trained with different losses and associated IoU scores on Pascal VOC.

Figure A.2: Evolution of the validation IoU during the course
of the optimization with the different losses considered.

batch-mIoU for present classes variant). As we are interested
on showing the effect of the loss, we do not apply the CRF
post-processing proposed in [30].

Results The mean Jaccard index and DICE over the 3 folds
for each of the four classes (right + left) of interest along
with the mean scores across all classes are given in Table B.2,
showing an improvement when using the Lovász-Softmax
loss. Some qualitative results are shown in Figure B.1, high-
lighting the improvements in detecting some fine subcortical
structures when the Lovász-Softmax loss is used.

C. Proximal gradient algorithm
We have developed a specialized optimization procedure

for the Lovász Hinge for binary classification with the Jac-
card loss, based on a computation of the proximal operator
of the Lovász Hinge. We include this algorithm here for
completeness but have not used it for the main results of

the paper, instead relying on standard stochastic gradient
descent with momentum. The proximal gradient algorithm
we propose here has been independently proposed by Frerix
et al. [28].

Our motivation for the proximal gradient algorithm stems
from the piecewise-linearity of our loss function, which
might destabilize stochastic gradient descent. Instead we
would like to exploit the geometry of the Lovász Hinge. We
therefore analyze the applicability of (variants of) the proxi-
mal gradient algorithm for optimization of a risk functional
based on the Lovász hinge.

Definition C.1 (Proximal operator). The proximal operator
of a function f with a regularization parameter λ is

proxf,λ(x) = arg min
u

f(u) +
λ

2
‖u− x‖2 (C.1)

We consider the problem of minimizing a
(sub)differentiable function f . Iterative application
of the proximal operator with an appropriately decreasing
schedule of {λt}0≤t≤∞ leads to convergence to a local
minimum analogously to gradient descent. Furthermore,
it is straightforward to show that, given an appropriately
chosen schedule of λ parameters, the proximal gradient
algorithm will converge at least as fast as gradient descent.

Proposition C.1. Given a gradient descent parameter η,
xt+1 = xt − η∇f(xt), there exists a set of descent pa-
rameters {λt}0≤t≤∞ such that (i) the step size of the
proximal operator is equivalent to gradient descent and
(ii) proxf,λt

(xt) ≤ xt − η∇f(xt).
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Table A.1: Losses measured on our validation set of the 20 Pascal VOC categories, after a training with cross-entropy loss (x),
hinge-loss (h), and Lovász-hinge (j). b indicates the performance of the base network, trained for all categories.

aeroplane bicycle bird boat

training b x h j b x h j b x h j b x h j

x-entropy, ·10−2 2.8 3.3 4.1 12.3 11.0 11.3 3.4 4.0 4.6 6.4 6.4 6.9
hinge, ·10−2 2.9 2.6 2.8 14.8 12.1 11.5 3.6 3.3 3.1 7.4 6.6 6.6
Jacc-Hinge, ·10−1 3.8 3.6 2.8 13.8 12.0 9.2 6.2 5.8 4.1 7.4 7.4 5.2
Image-IoU, % 86.2 88.6 87.7 89.6 63.2 61.2 58.7 66.3 84.5 82.1 81.3 86.9 80.3 75.8 73.2 79.9

bottle bus car cat

training b x h j b x h j b x h j b x h j

x-entropy, ·10−2 5.8 5.9 7.3 3.7 4.3 5.1 4.0 4.4 5.6 4.9 5.2 5.9
hinge, ·10−2 6.6 5.6 4.5 3.9 3.4 3.9 4.4 4.0 3.5 5.4 4.9 5.1
Jacc-Hinge, ·10−1 14.8 11.8 8.0 3.6 3.1 2.4 9.8 8.9 5.4 4.8 4.4 3.3
Image-IoU, % 71.9 70.1 68.0 70.5 90.7 90.2 90.4 91.2 76.3 77.0 75.5 80.5 88.7 86.0 86.5 89.8

chair cow diningtable dog

training b x h j b x h j b x h j b x h j

x-entropy, ·10−2 11.4 11.1 13.1 6.1 6.5 7.7 14.1 12.7 12.9 5.7 6.0 6.3
hinge, ·10−2 13.3 11.8 11.0 6.9 6.2 7.6 16.7 14.5 13.7 6.3 5.8 5.8
Jacc-Hinge, ·10−1 16.6 14.4 9.8 5.6 5.1 4.1 12.5 10.7 7.9 5.6 5.0 3.4
Image-IoU, % 59.3 54.0 51.2 59.6 83.4 84.0 82.6 86.3 66.7 70.6 70.0 73.8 83.8 82.1 81.7 87.6

horse motorbike person potted-plant

training b x h j b x h j b x h j b x h j

x-entropy, ·10−2 5.2 6.2 6.5 6.2 6.6 7.2 5.8 5.9 8.1 6.1 6.5 7.9
hinge, ·10−2 5.7 5.3 5.8 7.0 6.4 6.8 6.5 6.0 5.4 6.9 6.1 6.1
Jacc-Hinge, ·10−1 6.0 5.7 4.6 5.1 4.8 3.7 8.1 7.4 4.9 12.4 10.4 8.2
Image-IoU, % 82.4 82.1 79.1 84.8 83.8 82.6 82.8 85.4 78.2 79.1 77.1 82.0 66.1 65.6 65.3 68.0

sheep sofa train tvmonitor

training b x h j b x h j b x h j b x h j

x-entropy, ·10−2 6.4 6.5 7.8 13.8 13.4 14.9 7.0 7.2 8.8 5.6 6.0 6.2
hinge, ·10−2 7.2 6.4 7.9 16.4 15.2 17.2 7.9 7.3 9.2 6.3 5.5 4.7
Jacc-Hinge, ·10−1 6.3 5.8 4.6 10.5 9.9 8.2 5.2 5.2 3.0 9.3 7.6 5.9
Image-IoU, % 83.7 80.3 78.1 85.3 69.7 69.6 67.7 72.1 88.8 83.9 81.3 89.7 78.1 77.8 77.8 80.6

Table A.2: Per-class test IoU (%) corresponding to the results by the best learning rate for [22] compared to the results of the
Lovász hinge.

airplane cycle bird boat bottle bus car cat chair cow d. table dog horse mbike person plant sheep sofa train tv

[22] 79.9 54.7 75.5 72.5 68.7 86.2 73.3 78.4 56.6 75.4 72.2 76.9 68.8 79.4 71.7 62.1 76.5 69.9 77.8 77.1
Lovász-Hinge 89.6 66.3 86.9 79.9 70.5 91.2 80.5 89.8 59.6 86.3 73.8 87.6 84.8 85.4 82.0 68.0 85.3 72.1 89.7 80.6

Proof. Starting with claim (i), we note that the proximal op-
erator is the Lagrangian of the constrained optimization prob-
lem arg minu f(u) s.t. ‖x− u‖2 ≤ R for some R > 0, and
we may therefore consider λt such that Rt = ‖η∇f(xt)‖2,
where {xt}0≤t≤∞ is the sequence of values visited in gradi-
ent descent.

Claim (ii) follows directly from the definition of the prox-

imal operator as the minimization of f(u) within a ball of
radius Rt around xt must be at least as small as the value at
the gradient descent direction.

It is straightforward to convert a gradient descent step
size schedule to an equivalent proximal gradient schedule
of λt values such that, were the objective linear, the two
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Ground Truth Cross-entropy Lovász-Softmax

Figure B.1: Some examples of segmentation on the ISBR dataset. These examples are taken from two different patients and
two different folds, and show an improvement in the segmentation of some fine structures when the Lovász-Softmax loss is
used.

Block convolution pooling batch norm.

kernel # filters dilation kernel stride

1 7× 7 64 1 3× 3 2 yes
2 5× 5 128 1 3× 3 2 yes
3 3× 3 256 2 3× 3 1 yes
4 3× 3 512 2 3× 3 1 yes
5 3× 3 512 2 3× 3 1 yes
6 4× 4 1024 4 none yes
7 1× 1 9 1 none no

Table B.1: Layers used for the brain image segmentation.

algorithms would be equivalent. Indeed, the proximal gra-
dient algorithm applied to a piecewise linear objective only
differs from gradient descent at the boundaries between lin-
ear pieces, in which case it converges in a strictly smaller
number of steps than gradient descent.

We optimize a deep neural network architecture by a mod-
ified backpropagation algorithm in which the gradient direc-
tion with respect to the loss layer is given by the direction of
the empirical difference xt − proxf (xt). We note that this
modification to the standard gradient computation is compat-
ible with popular optimization strategies such as Adam [16].
In initial experiments using the true gradient rather than that
based on the proximal operator, we found that the use of
momentum led to faster empirical convergence than Adam,
and we therefore have based our subsequent comparison and
empirical results on optimization with momentum.

We show here that these momentum terms still do not lead

in practice to as efficient update directions as those defined
by the proximal operator.

Definition C.2 (Momentum [31]). Gradient descent with
momentum is achieved with the following update rules

vt+1 =αvt +∇f(xt) (C.2)
xt+1 =xt − ηvt+1, (C.3)

where η is the gradient descent parameter and α ∈ [0, 1] is
the momentum coefficient.

Unrolling this recursion shows that momentum gives an
exponentially decaying weighted average of previous gra-
dient values, and setting α = 0 recovers classical gradient
descent.

Figure C.1 shows the behavior of gradient descent with
momentum on the problem

min
x∈R2

max

(
0,

〈
x,

(
ν
0

)〉
,

〈
x,

(
0
1

)〉)
, (C.4)

where ν is a positive scalar that allows us to adjust the rel-
ative scale of the gradients on either side of the boundary
between the pieces. In all cases, the momentum oscillates
around piecewise-linear edges, and in Figure C.1c, we see
that traversing to a piece of the loss surface with very differ-
ent slope can lead to multiple steps away from the boundary
before returning to a steeper descent direction. By contrast,
the proximal algorithm immediately determines the optimal
descent direction.
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Table B.2: Test results on IBSR brain segmentation task - Average on 3 folds

Thalamus
Proper Caudate Putamen Pallidum Mean

Cross
Entropy

Jaccard 72.74 52.31 61.55 54.04 60.16

DICE 84.17 68.33 76.07 70.02 74.65

Lovász
Softmax

Jaccard 73.56 54.44 62.57 55.74 61.55

DICE 84.74 70.25 76.89 71.50 75.84

(a) ν = 0.7 (b) ν = 1.0

(c) ν = 1.3

Figure C.1: Optimization behavior of the piecewise-linear
surface defined in Equation C.4: gradient descent (green,
dashed) and momentum (orange, plain) oscillate around the
edge, while the proximal algorithm (green) finds the optimal
descent direction.

Optimization study We specialize the proximal gradient
algorithm to our proposed Jaccard Hinge loss. We compute
an approximate value of the proximal point to any initial
point on the loss surface by following a greedy minimization
path to the proximal objective C.1. This computation is
detailed in Algorithm C.1.

Figure C.2: Jaccard loss optimization with different opti-
mization methods.

Algorithm C.1 Computation of prox∆J1
,λ(m)

Input: Currentm, ∆J1 , λ
Output: m∗ = prox∆J1

,λ(m)

1: v0, π ← decreasing ordering ofm and permutation
2: v ← v0

3: g← gradv ∆J1 (as a function of the sorted margins)
4: E ← {constraint gi = gi+1 = . . . = gi+p

for each equality vi = vi+1 = . . . = vi+p}
5: cz ← constraint gz+1 = . . . = gd

for z minimal index such that vz < 0
6: finished← False
7: while not finished do
8: if g = 0 : break
9: g← projE∪{cz} g

10: vnext ← projection of v on the closest edge of ∆J1 in
the direction g

11: stop← 1/λ+ 〈v − v0,g〉/〈g,g〉
12: if stop < ‖vnext − v‖ then
13: v ← v + stop · g
14: finished← True
15: else
16: v ← vnext
17: Add the new constraint to E or update cz
18: end if
19: end while
20: return m∗ = vπ−1

We investigate the choice of the optimization in terms
of empirical convergence rates on the validation data. We
evaluate the use of varying optimization strategies for the last
layer of the network in Figure C.2. Experimentally, we find
that the proximal gradient algorithm converges better than
stochastic gradient descent alone, and has similar or better
performance to stochastic gradient descent with momentum,
which it can easily be combined with.
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