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Figure 1. Our approach enables the real-time estimation of the material of general objects (left) from just a single monocular color image.
This enables exciting live mixed-reality applications (right), such as for example cloning a real-world material onto a virtual object.

In this supplemental document, we show additional results,
perform more evaluations, and we further justify the design
choices made in our approach. More specifically, we show
more results on real images (see Figure 3), more material
transfer results (see Figure 4), more results on the data of
Georgoulis et al. [2] (see Figure 6) and Lombardi and Nishino
[4] (see Figure 7).

1. Shininess Classification versus Regression
As described in the main paper, our approach uses classifica-
tion for recovering the specular exponent. For this classifica-
tion task, we segmented the range of exponents by appearance
into eight bins, which are illustrated in Figure 5. We opted
for classification over regression, since regression was often
overestimating the specular shininess of objects. As an
example we show the material estimation results for a diffuse
rubber duck in Figure 2. As is evident, the regression-based
approach overestimates the specularity of the object, whereas
classification is correctly able to estimate its diffuse nature.
We decided to train on synthetic training data and to
sample the bins uniformly, instead of using a real-world
dataset like MERL [5]. The MERL dataset consists of 100
materials. Model fits for various parametric BRDF models
are available for these materials, including the Blinn—Phong
model we use. The Blinn—Phong fit for these materials shows
that more than 50 of the 100 material are highly specular and
fall into the most specular bin in our classification system,
or even higher. Sampling materials for our training data
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Figure 2. Regression often overestimates the shininess of objects.
Therefore, we choose a classification-based approach.
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from the MERL dataset would result in our networks being
heavily biased towards highly specular exponent estimation.
Although a dataset such as MERL is very useful in studying
how real materials span the large 4D space of BRDFs, it does
not approximate well the distribution of BRDFs of everyday
objects. For this reason, we chose to uniformly sample
exponent values from a perceptually segmented classification
system with 8 bins. For images of resolution 256 X256, it is
difficult to differentiate more levels of shininess, and using
more bins does not provide much greater value perceptually.

2. Network Architecture Details

The network architecture of the five deep neural networks
that make up our approach are detailed in Figures 8 to 11.
SegmentationNet, SpecularNet and MirrorNet are based on
the U-Net architecture [6], and AlbedoNet and ExponentNet
are standard feed-forward networks for regression and
classification, respectively.
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Figure 3. Real-world material estimation results based on a single color input image. Our approach produces high-quality results for a large
variety of objects and materials, without manual interaction. Note the high quality of the jointly computed binary segmentation masks.
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Figure 4. Material estimation and transfer. Our method obtains convincing material estimates (second column) and material transfer results
(column three to ten) on the data of Liu et al. [3]. We use the normal map estimated by Liu et al. [3] as basis for our environment map estimation.
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Figure 5. The 8 bins used for shininess exponent estimation in our approach, ranging from most diffuse (bin 1) to most shiny (bin 8). The
visualization uses a material with a diffuse albedo of zero, a specular albedo of one, and shininess set to the mean value of each exponent
bin. The materials are shown under the ‘Uffizi’ environment map Debevec [1].
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Figure 6. Comparison to the approach of Georgoulis et al. [2]. Note that their approach is specifically trained for the outdoor estimation
scenario, while our approach is trained for the indoor setting. Nonetheless, our approach obtains results of similar or higher quality.
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Figure 7. Our approach estimates the diffuse—specular decomposition from a single color image. The specular decomposition is obtained by
multiplying specular albedo and specular shading layer, and the diffuse decomposition is obtained by subtracting the specular decomposition
layer from the input image. Input images and ground-truth environment maps from Lombardi and Nishino [4]. We tone-mapped their images
to process them with our approach.
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Figure 8. The architecture of our SegmentationNet, which learns
a binary segmentation mask from a color input image. The numbers
in each box denote width X height X channels of the layer’s output,
and a plus in circle represents concatenation of feature maps.
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Figure 10. The architecture of our MirrorNet, which learns a
grayscale mirror image from a grayscale specular shading image.
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Figure 9. The architecture of our SpecularNet, which learns the
grayscale specular decomposition from a masked color input image.
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Figure 11. Left: The architecture of our AlbedoNet, which learns
diffuse albedo in color (3 parameters) and grayscale specular
albedo (1 parameter) from the masked color input image (3 color
channels) concatenated with the grayscale specular image (1 color
channel). Right: The architecture of our ExponentNet, which learns
the shininess exponent using classification into 8 bins from the
concatenation of the specular and mirror images (both grayscale).



