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Here we first give better insights about the Theorem 1
(Eq. (2)) in the main paper and discuss how and when
MAD-GAN leads to diverse generations. In addition to that,
we provide additional experiments (both synthetic and real-
world datasets) for ablation study, and then architectures
and data preparation for all the experiments reported in the
paper.

1. Insights for Diversity in MAD-GAN
One obvious question that could arise is that is it possi-

ble that all the generators learn to capture the same mode?.
The short answer is, theoretically yes and in practice no. Let
us begin with the discussion to understand this. Theoreti-
cally, if pgi = pd, for all i, then also the minimum objective
value can be achieved (Theorem 1 in the main paper). This
implies, in worst case, MAD-GAN would perform same as
the standard GAN. However, as discussed below, this is pos-
sible in following highly unlikely situations:

• all the generators always generate exactly similar sam-
ples so that the discriminator is not able to differentiate
them. In this case, the discriminator will learn a uni-
form distribution over the generator indices, thus, the
gradients passed through the discriminator will be ex-
actly the same for all the generators. However, this
situation in general is not possible as all the generators
are initialized differently. Even a slight variation in
the samples from the generators will be enough for the
discriminator to identify them and pass different gradi-
ent information to each generator. In addition, the ob-
jective function of generators is only to generate real
samples, thus, there is nothing that encourages them to
generate exactly the same samples.

• the discriminator does not have enough capacity to
learn the optimal parameters. This is in contrast to
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# Generators Chi-square (×107) KL-Div

1 1.27 0.57
2 1.38 0.42
3 3.15 0.71
4 0.39 0.28
5 3.05 0.88
6 0.54 0.29
7 0.97 0.78
8 4.83 0.68

Table 1: Synthetic experiment with different number of
MAD-GAN generators as Fig. 1.

the assumption made in Theorem 1, which is that the
discriminator is optimal. Thus, it should have enough
capacity to learn a feature representation such that it
can correctly identify samples from different genera-
tors. In practice, this is a very easy task and we did not
have to modify anything up to the feature representa-
tion stage of the architecture of the discriminator. We
used the standard architectures (explained in Section 3)
for all the tasks.

Hence, with random initializations and sufficient capacity
generator/discriminator, we can easily avoid the trivial solu-
tion in which all the generators focus on exactly the same re-
gion of the true data distribution. This has been very clearly
supported by various experiments showing diverse genera-
tions by MAD-GAN.

2. Additional Experiments
2.1. Varying number of generators in MAD-GAN

Here we experiment by varying the number of genera-
tors in MAD-GAN. We use toy synthetic experiments to
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Figure 1: A toy example to understand the behavior of MAD-GAN with different number of generators (each method was
trained for 1, 98, 000 iterations). The orange bars show the density estimate of the training data and the blue ones for the
generated data points. After careful cross-validation, we chose the bin size of 0.1.

Figure 2: MA-GAN performance corresponding to ”non-
parametric density estimation” (Fig. 4) in the main paper.

understand the behavior. The real data distribution is the
same as that in the main paper (GMM with 5 Gaussians).
For better non-parametric estimation, we use 1 million sam-
ple points from real distribution (instead of 65, 536 used
in the main paper). We generate equal number of points
from each of the generators such that they sum up to 1 mil-
lion. The results are shown in Fig. 1 and corresponding
Tab. 1. It is quite clear that as the number of generators
are increased up to 4, the sampling keeps getting more re-
alistic. In case when multiple modes are significantly over-
lapped/clustered, a generator can capture cluster of modes.
Therefore, for this real data distribution, 4 generators are

enough to capture all the 5 modes. With 5 or more gener-
ators, all the modes were still captured, but the two over-
lapping modes have more than two generation peaks. This
is mainly because multiple generators are capturing this re-
gion and all the generators (mixture components) were as-
signed equal weights during sampling.

Other works using more than one generators [5, 1] also
use the number of generators as a hyper-parameter as know-
ing a-priori the number of modes in a real-world data (e.g.
images) in itself is an open problem.

2.2. Non-Parametric Density Estimation

Fig. 2 shows the performance of MA-GAN in ‘non-
parametric density estimation’ experiment described in Sec-
tion 5.1 of the main paper.

2.3. InfoGAN for Edges-to-Handbags Task

To make our baseline as strong as possible, we did some
more experiments with InfoGAN for edges-to-handbags
task. The results shown in main paper (Fig. 6) for InfoGAN
are obtained by not sharing the discriminator and Q network
parameters. Here we did two experiments by sharing all the
initial layers of the discriminator and Q network. In the
first experiment, the input is the categorical code besides
the conditional image. In the second experiment, noise is
also added as an input. The architecture details are given in
Section 3.3.2. In Fig. 4, we show the results of both these
experiments side by side. There are not much perceivable
changes as we vary the categorical code values. Generator
simply learn to ignore the input noise as was also pointed



Figure 4: InfoGAN for edges-to-handbags task by using three categorical code values. In each sub-figure, the first column
represents the input, columns 2 − 4 represents generations when input is categorical code besides conditioning image, and
columns 5−7 are generations with noise as an additional input. The generations for each of the two architectures are visually
the same irrespective of the categorical code value, which clearly indicates that it is not able to capture diverse modes.

Figure 6: Face generations using MAD-GAN. Each sub-figure represents generations by a single generator. The first gener-
ator is generating faces with very dark background. The second generator is generating female faces with long hair in very
light background, while the third one is generating faces with colored background and casual look (based on direction of
viewing and expression) .

by [4].

2.4. Diverse Face Generation

In the main paper (Fig. 9), we showed diverse face gen-
erations using MAD-GAN with three generators. To get
better understanding about the possible diversities, we show
additional generations in Fig. 6.

3. Network Architectures and Parameters
Here we provide all the details about the architectures

and the parameters used in various experiments shown
in the main paper. For the experiment concerning non-
parametric density estimation, the MAD-GAN parameters
are randomly initialized using xavier initialization with nor-

mal distributed random sampling [3]. For all the other ex-
periments, the initialization done is same as the base archi-
tecture used to adapt MAD-GAN.

3.1. Non-Parametric Density Estimation

Architecture Details: The generator has two fully con-
nected hidden layers with 128 neurons (each of which are
followed by exponential linear unit) and fully connected
outer layer. In case of MAD-GAN and MA-GAN, we used
4 generators with parameters of first two layers shared.
Generator generates 1D samples. Input to each generator
is a uniform noise U(−1, 1) of 64 dimension. In case of
InfoGAN, 5 dimensional categorical code is further con-



DCGAN, Unrolled
GAN, InfoGAN, MA-
GAN Disc

Mode-Reg
DCGAN
Disc

Mode-Reg
DCGAN
Enc

WGAN,
GoGAN
Disc

BEGAN
Enc

BEGAN
Dec

MAD-
GAN
Disc

InfoGAN
QNet

Input: 1 1 1 32 1 1 1 1
fc: 128, leaky relu
fc: 128, leaky relu

fc: 1 1 64 1 32 1 5
(nGen+1) 5

sigmoid identity softmax

Table 2: Non-Parametric density estimation architecture for discriminators (Disc), encoders (Enc), decoders (Dec), and Q
Network (QNet). nGen is number of generators, fc is fully connected layer.

catenated with the uniform noise to form the input. The
categorical code is randomly sampled from the multinomial
distribution. The discriminator architecture for respective
networks is shown in Tab. 2. Mode-Regularized GAN ar-
chitecture has encoder, BEGAN has encoder and decoder,
and InfoGAN has Q Network whose details are also present
in Tab. 2.

MAD-GAN has multi-label cross entropy loss. MA-
GAN has binary cross entropy loss. For training, we use
Adam optimizer with batch size of 128 and learning rate of
1e − 4. In each mini batch, for MAD-GAN we have 128
samples from each of the generators as well as real distribu-
tion, while for MA-GAN 128 samples are chosen from real
distribution as well as all the generators combined.

Dataset Generation We generated synthetic 1D data us-
ing GMM with 5 Gaussians and select their means at
10, 20, 60, 80 and 110. The standard deviation used is
3, 3, 2, 2 and 1. The first two modes overlap significantly
while the fifth one is peaky and stands isolated.

3.2. Stacked and compositional MNIST Experi-
ments

Architecture details: The architecture for stacked-
MNIST is similar to the one used in [6]. Please refer to the
Tab. 3 for generator architecture and Tab. 4 for discriminator
architecture and Q network architecture of InfoGAN. The
architecture for compositional-MNIST experiment is same
as DCGAN [8]. Please refer to the Tab. 5 for discrimina-
tor architecture and Q network architecture of InfoGAN. In
both the experiments, Q network of InfoGAN shares all ex-
cept the last layer with the discriminator.

Dataset preparation: MNIST database of hand written
digits are used for both the tasks.

number
outputs stride

Input: z ∼ N (0, I256)

Fully connected 4 * 4 * 64
Reshape to image 4,4,64
Transposed Convolution 32 2
Transposed Convolution 16 2
Transposed Convolution 8 2
Convolution 3 1

Table 3: Generator architecture for 1000 class stacked-
MNIST experiment. For MAD-GAN, all the layers except
those mentioned in last two rows are shared.

number
outputs stride

Input: 32x32 Color Image
Convolution 4 2
Convolution 8 2
Convolution 16 2
Flatten
Fully Connected 1

Table 4: Discriminator architecture for 1000 class stacked-
MNIST experiment. For MAD-GAN, with k generators, it
is adapted to have k + 1 dimensional last layer output. For
InfoGAN, with 156 dimensional salient variables and 100
dimensional incompressible noise, it is adapted to have 156
dimensional output for Q network.

3.3. Image-to-Image Translation

3.3.1 MAD-GAN

Architecture details: The network architecture is
adapted from [4] and the experiments were conducted with
the U-Net architecture and patch based discriminator.

In more detail, let Ck denote a Convolution-BatchNorm-
ReLU layer with k filters and CDk represent a Convolution-



number
outputs stride

Input: Color Image (64x64)
Convolution 64 2
Convolution 128 2
Convolution 256 2
Convolution 512 2
Flatten
Fully Connected 1

Table 5: Discriminator architecture for 1000 class
compositional-MNIST experiment. For MAD-GAN, with
k generators, it is adapted to have k + 1 dimensional last
layer output. For InfoGAN, with 156 dimensional salient
variables and 100 dimensional incompressible noise, it is
adapted to have 156 dimensional output for Q network.

BatchNorm-Dropout-ReLU layer with a dropout rate of
50%. All Convolutions are 4× 4 spatial filters with a stride
of 2. Convolutions in the encoder, and in the discriminator,
downsample by a factor of 2, whereas in the decoder they
upsample by a factor of 2.

Generator Architectures We used the U-Net generator
based architecture from [4] as follows:

• U-Net Encoder: C64-C128-C256-C512-C512-C512-
C512-C512

• U-Net Decoder: CD512-CD1024-CD1024-C1024-
C1024-C512-C256-C128. Note that, in case of MAD-
GAN, the last layer does not share parameters with
other generators.

After the last layer in the decoder, a convolution is applied
to map to the number of output channels to 3, followed
by a tanh function. BatchNorm is not applied to the first
C64 layer in the encoder. All ReLUs in the encoder are
leaky, with a slope of 0.2, while ReLUs in the decoder are
not leaky. The U-Net architecture has skip-connections be-
tween each layer i in the encoder and layer n− i in the de-
coder, where n is the total number of layers. The skip con-
nections concatenate activations from layer i to layer n− i.
This changes the number of channels in the decoder.

Discriminator Architectures The patch based 70 × 70
discriminator architecture was used in this case : C64-
C128-C256-C512.

Diversity term After the last layer, a convolution is ap-
plied to map the output layer to the dimension of k + 1
(where k is the number of generators in MAD-GAN) fol-
lowed by the softmax layer for the normalization.

For the training, we used Adam optimizer with learn-
ing rate of 2e − 4 (for both generators and discriminator),
λL1 = 10 (hyperparameter corresponding to the L1 regu-
larizer) and batch size of 1.

3.3.2 InfoGAN

The network architecture is adapted from [4] and the ex-
periments were conducted with the U-Net architecture and
patch based discriminator.

Generator Architectures The U-Net generator is exactly
same as in [4] except that the number of input channels are
increased from 3 to 4. For the experiment done in Section
2.3, to take noise as input, input channels are increased to 5
(one extra input channel for noise).

Discriminator Architectures The discriminator is ex-
actly same as in [4]: C64-C128-C256-C512

Q network Architectures The Q network architecture is
C64-C128-C256-C512-Convolution3-Convolution3. Here
first Convolution3 gives a output of 30 × 30 patches with
3 channels while second Convolution3 just gives 3 dimen-
sional output. All the layers except last two are shared with
the discriminator to perform the experiments as mentioned
in Section 2.3.

Diversity term To capture three kinds of distinct modes,
the categorical code can take three values. Hence, in this
case, the categorical code is a 2D matrix in which one third
of entries are set to 1 and remaining to 0 for each cate-
gory. The generator is fed input image along with cate-
gorical code appended channel wise to the image. For the
experiment done in Section 2.3, to take noise as input, the
generator input is further channel wise appended with a 2D
matrix of normal noise.

For the training, we used Adam optimizer with learn-
ing rate of 2e − 4 (for both generator and discriminator),
λL1 = 10 (hyperparameter corresponding to the L1 regu-
larizer) and batch size of 1.

Dataset Preparation:

• Edges-to-Handbags: We used 137, 000 Amazon hand-
bag images from [10]. The random split into train and
test was kept the same as done by [10].

• Night-to-Day: We used 17, 823 training images ex-
tracted from 91 webcams. We thank Jun-Yan Zhu for
providing the dataset.



Discriminator D
Input 64x64 Color Image
4x4 conv. 64 leakyRELU. stride 2. batchnorm
4x4 conv. 128 leakyRELU. stride 2. batchnorm
4x4 conv. 256 leakyRELU. stride 2. batchnorm
4x4 conv. 512 leakyRELU. stride 2. batchnorm
4x4 conv. output leakyRELU. stride 1

Table 6: DCGAN Discriminator: It is adapted to have k+1
dimensional last layer output for MAD-GAN with k gener-
ators. (normalizer is softmax).

3.4. Diverse-Class Data Generation

Architecture details: The network architecture is
adapted from DCGAN [8]. Concretely, the discriminator
architecture is described in Table 8 and the generator
architecture in Table 7. We use three generators without
sharing any parameter. The residual layers helped in
improving the image quality since the data manifold was
much more complicated and the discriminator needed more
capacity to accommodate it.

Diversity terms For the training, we used Adam opti-
mizer with the learning rate of 2e − 4 (both generator and
discriminator) and batch size of 64.

Dataset preparation: Training data is obtained by com-
bining dataset consisting of various highly diverse images
such as islets, icebergs, broadleaf-forest, bamboo-forest and
bedroom, obtained from the Places dataset [9]. To create the
training data, images were randomly selected from each of
them, creating a dataset consisting of 24, 000 images.

3.5. Diverse Face Generations with DCGAN

Architecture details: The network architecture is
adapted from DCGAN [8]. Concretely, the discriminator
architecture is described in Table 8 and the generator
architecture in Table 7. In this case all the parameters of the
generators except the last layer were shared. The residual
layers helped in improving the image quality since the data
manifold and the manifolds of each of the generators was
much more complicated and the discriminator needed more
capacity to accommodate it.

Generator G
Input ∈ R100

4x4 upconv. 512 RELU.batchnorm.shared
4x4 upconv. 256 RELU. stride 2.batchnorm.shared
4x4 upconv. 128 RELU. stride 2.batchnorm.shared
4x4 upconv. 64 RELU. stride 2.batchnorm.shared
4x4 upconv. 3 tanh. stride 2

Table 7: DCGAN Generator: All the layers except the last
one are shared among all the three generators.

Residual Discriminator D
Input 64x64 Color Image
7x7 conv. 64 leakyRELU. stride 2. pad 1. batchnorm
3x3 conv. 64 leakyRELU. stride 2. pad 1. batchnorm
3x3 conv. 128 leakyRELU. stride 2.pad 1. batchnorm
3x3 conv. 256 leakyRELU. stride 2. pad 1. batchnorm
3x3 conv. 512 leakyRELU. stride 2. pad 1. batchnorm
3x3 conv. 512 leakyRELU. stride 2. pad 1. batchnorm
3x3 conv. 512 leakyRELU. stride 2. pad 1. batchnorm
RESIDUAL-(N512, K3, S1, P1)
RESIDUAL-(N512, K3, S1, P1)
RESIDUAL-(N512, K3, S1, P1)

Table 8: Diverse-Class Data Generation and Diverse Face
Generation: The last layer output is k + 1 dimensional
for MAD-GAN with k generators (normalizer is softmax).
RESIDUAL layer is elaborated in Table 9.

RESIDUAL-Residual Layer
Input: previous-layer-output
c1: CONV-(N512, K3, S1, P1), BN, ReLU
c2: CONV-(N512, K3, S2, P1), BN
SUM(c2,previous-layer-output)

Table 9: Residual layer description for Tab. 8.

Diversity terms For the training, we used Adam opti-
mizer with the learning rate of 2e − 4 (both generator and
discriminator) and batch size of 64.

Dataset preparation: We used CelebA dataset as men-
tioned for face generation based experiments. For Image
generation all the images (14, 197, 122) from the Imagenet-
1k dataset [2] were used to train the DCGAN with 3 Gener-
ators alongside the MAD-GAN objective. The images from
both CelebA and Imagenet-1k were resized into 64× 64.

3.6. Unsupervised Representation Learning

Architecture details: Our architecture uses the one pro-
posed in DCGAN [8]. Similar to the DCGAN experiment
on SVHN dataset (32×32×3) [7], we removed the penulti-



2 Generators 3 Generators 4 Generators
20.5% 18.2% 17.5%

Table 10: The misclassification error of MAD-GAN on
SVHN with different number of generators are shown.

mate layer of generator (second last row in Tab. 7) and first
layer of discriminator (first convolution layer in Tab. 6).

Classification task: We trained our model on the avail-
able SVHN dataset [7]. For feature extraction using dis-
criminator, we followed the same method as mentioned in
the DCGAN paper [8]. The features were then used for
training a regularized linear L2-SVM. The ablation study is
presented in Tab. 10.

Dataset preparation: We used SVHN dataset [7] consist-
ing of 73, 257 digits for the training, 26, 032 digits for the
testing, and 53, 1131 extra training samples. As done in
DCGAN [8], we used 1000 uniformly class distributed ran-
dom samples for training, 10, 000 samples from the non-
extra set for validation and 1000 samples for testing.

For the training, we used Adam optimizer with learning
rate of 2e−4 (both generator and discriminator), λ = 1e−4
(competing objective), and batch size of 64.
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