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In this supplementary file, we provide:
1. The optimization procedures for solving the hybrid `1-`0 decomposition model.
2. More descriptions about the subjective experiments.
3. More visual comparisons of tone mapping results on our HDR database.

1. Solving the Hybrid `1-`0 Decomposition Model
As demonstrated in the main paper, the matrix-vector form of the hybrid `1-`0 decomposition model is

min
b

1

2
‖s− b‖22 + λ1‖Ob‖1 + λ21

>F (O(s− b)), (1)

where s, b ∈ RN are vector variables denoting the original image and the base layer, respectively. O denotes the concatenation
of two gradient operator matrices O = [O>x ,O

>
y ]
> ∈ R2N×N . 1 ∈ R2N is a vector of all ones. F (.) is an element-wise

indicating function, which outputs ones when the entries of O(s− b) are non-zeros, and outputs zeros otherwise.
The objective function (1) cannot be solved directly due to the complicated `1 and `0 gradient sparsity terms. We introduce

two auxiliary variables, c1, c2 ∈ R2N , so that the hybrid `1-`0 decomposition model can be reformulated as a linear
equality-constrained problem with three variables b, c1, c2:

min
b,c1,c2

1

2
‖s− b‖22 + λ1‖c1‖1 + λ21

>F (c2),

s.t. c1 = Ob, c2 = O(s− b)

(2)

We adopt the Alternating Direction Method of Multipliers (ADMM) algorithm [1] to solve the constrained optimization
problem. The Augmented Lagrangian function of problem (2) is

L(b, c1, c2,y1,y2) =
1
2‖s− b)‖22 + λ1‖c1‖1 + λ21

>F (c2) + (c1 − Ob)>y1

+
(
c2 − O(s− b)

)>
y2 +

ρ
2

(
‖c1 − Ob‖22 + ‖c2 − O(s− b)‖22

)
,

(3)

where yi ∈ R2N , i = 1, 2 are the Lagrangian dual variables. At iteration k (k = 0, 1, ...,K), the function (3) is optimized
by minimizing the primal sub-problems with respect to b, c1, c2, and maximizing the dual problem with respect to y1, y2

alternatively.
(1) Solving bk+1 while fixing the others.
Firstly we split vector ck1 into two equal-length pieces, i.e., ck1 = [ck>1,1, c

k>
1,2]
> , where ck1,i ∈ RN , i = 1, 2. In the same

fashion, ck2 is split into ck2,1 and ck2,2, yk1 into yk1,1 and yk1,2, and yk2 into yk2,1 and yk2,2. Then the objective function with
respect to bk+1 is a quadratic programming problem

bk+1 = argmin
b

{
1

2
‖s− b‖22+

ρk

2
‖ck1,1 − Oxb+

yk1,1
ρk
‖22 +

ρk

2
‖ck1,2 − Oyb+

yk1,2
ρk
‖22

+
ρk

2
‖ck2,1 − Ox(s− b) +

yk2,1
ρk
‖22 +

ρk

2
‖ck2,2 − Oy(s− b) +

yk2,2
ρk
‖22

}
,

(4)
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which can be efficiently solved in Fourier domain

bk+1=fft−1
(

fft(s) + fft∗(Ox) · fxk + fft∗(Oy) · fyk

1 + 2ρk(fft∗(Ox) · fft(Ox) + fft∗(Oy) · fft(Oy))

)
, (5)

where

fxk =fft

(
ρk(ck1,1 +

yk1,1
ρk

+ Oxs− ck2,1 −
yk2,1
ρk

)

)
,

fyk =fft

(
ρk(ck1,2 +

yk1,2
ρk

+ Oys− ck2,2 −
yk2,2
ρk

)

)
.

(6)

The denotations fft, fft∗, and fft−1 are the 2-D FFT, conjugate FFT and inverse FFT, respectively.
(2) Solving ck+1

1 . The objective function with respect to ck+1
1 is

ck+1
1 =argmin

c1

{
2λ1
ρk
‖c1‖1 + ‖c1 − Obk+1 +

yk1
ρk
‖22

}
, (7)

which can be solved by soft-shrinkage operation:
ck+1
1 = Tλ1/ρk(Ob

k+1 − yk1/ρ
k), (8)

where Tα(x) = sign(x) ·max(|x| − α, 0) is the soft-thresholding function.
(3) Solving ck+1

2 .
The objective function with respect to ck+1

2 is:

ck+1
2 = argmin

c2

{
2λ2
ρk

F (c2) + (c2 − qk)2

}
, where qk = O(s− bk+1)− yk2

ρk
. (9)

This objective function can be solved in an element-wise manner
2N∑
j=1

min
c2,j

{
2λ2
ρk

F (c2,j) + (c2,j − qkj )
2

}
, (10)

where j is the entry index of a vector. The solution of each scalar function in (10) is

c2,j =

{
0, if (qkj )

2 ≤ 2λ2

ρk

qkj , Otherwise
. (11)

This can be proved as follows:

Proof. Denote by Ej the value of the jth scalar function in (10)

Ej =
2λ2
ρk

F (c2,j) + (c2,j − qkj )
2. (12)

1) When 2λ2

ρk
≥ (qkj )

2, the function value for non-zero c2,j is

Ej(c2,j 6= 0) =
2λ2
ρk

+ (c2,j − qkj )
2 ≥ 2λ2

ρk
≥ (qkj )

2. (13)

On the other hand, the function value for the zero-valued c2,j is

Ej(c2,j = 0) = (qkj )
2. (14)

Since Ej(c2,j 6= 0) ≥ (qkj )
2 ≥ Ej(c2,j = 0), the solution is c2,j = 0 when 2λ2

ρk
≥ (qkj )

2.
2) When 2λ2

ρk
< (qkj )

2, Eq. (14) still holds. On the other hand, for non-zero c2,j , Ej(c2,j 6= 0) has a minimum of 2λ2

ρk
at

c2,j = qkj . Because Ej(c2,j = qkj ) =
2λ2

ρk
≤ (qkj )

2 = Ej(c2,j = 0), the solution is c2,j = qkj when 2λ2

ρk
< (qkj )

2.

(4) Dual ascend updates:

yk+1
1 = yk1 + ρk(ck+1

1 − Obk+1),

yk+1
2 = yk2 + ρk(ck+1

2 − O(s− bk+1)).
(15)

(5) Update ρk+1 as ρk+1 = 2ρk.



2. More descriptions about the Subjective experiments
In the subjective experiment, as described in the main paper, 6 subjects including 3 males and 3 females were requested to

rate the tone mapping results of each tone mapper in the score range from 1 (the worst) to 8 (the best) spaced by 0.5. Two
of the six subjects are computer vision researchers, while the others major in other fields. The subjective experiments were
conducted in an indoor environment with stable lighting. The images are shown on a PA328 display of 32 inch (7680×4320).
A Matlab graphical interface is designed to exhibit the 7 tone mapping results together with the original HDR radiance map
simultaneously on the screen, as illustrated in Fig. 1. The original radiance map is fixed at the top left corner, while the 7 tone
mapping results are deployed in random locations. For each tone mapping result, there is a rectangular input box where the
subjects can type in the scores. Before the experiment, the subjects were given sufficient instructions on the operation of the
interface program. Each subject completed the whole experiment with 40 groups of comparisons in two sessions with a 5-min
break between the sessions.

Figure 1. Matlab interface.



3. More Visual Comparisons of Tone Mapping Results
Here we visually compare our tone mapper with the other 6 state-of-the-art tone mappers on 10 radiance maps in our

database.

(a) Radiance map (b) WLS [2]

(c) GLW [6] (d) VA [3]

(e) BWC [5] (f) GF [4]

(g) GR [7] (h) Ours

Figure 2. Comparison of tone mapping results.



(a) Radiance map (b) WLS [2]

(c) GLW [6] (d) VA [3]

(e) BWC [5] (f) GF [4]

(g) GR [7] (h) Ours

Figure 3. Comparison of tone mapping results.



(a) Radiance map (b) WLS [2]

(c) GLW [6] (d) VA [3]

(e) BWC [5] (f) GF [4]

(g) GR [7] (h) Ours

Figure 4. Comparison of tone mapping results.



(a) Radiance map (b) WLS [2]

(c) GLW [6] (d) VA [3]

(e) BWC [5] (f) GF [4]

(g) GR [7] (h) Ours

Figure 5. Comparison of tone mapping results.



(a) Radiance map (b) WLS [2]

(c) GLW [6] (d) VA [3]

(e) BWC [5] (f) GF [4]

(g) GR [7] (h) Ours

Figure 6. Comparison of tone mapping results.



(a) Radiance map (b) WLS [2]

(c) GLW [6] (d) VA [3]

(e) BWC [5] (f) GF [4]

(g) GR [7] (h) Ours

Figure 7. Comparison of tone mapping results.



(a) Radiance map (b) WLS [2]

(c) GLW [6] (d) VA [3]

(e) BWC [5] (f) GF [4]

(g) GR [7] (h) Ours

Figure 8. Comparison of tone mapping results.



(a) Radiance map (b) WLS [2]

(c) GLW [6] (d) VA [3]

(e) BWC [5] (f) GF [4]

(g) GR [7] (h) Ours

Figure 9. Comparison of tone mapping results.



(a) Radiance map (b) WLS [2]

(c) GLW [6] (d) VA [3]

(e) BWC [5] (f) GF [4]

(g) GR [7] (h) Ours

Figure 10. Comparison of tone mapping results.



(a) Radiance map (b) WLS [2]

(c) GLW [6] (d) VA [3]

(e) BWC [5] (f) GF [4]

(g) GR [7] (h) Ours

Figure 11. Comparison of tone mapping results.
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