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Preface. In this supplemental material, we show that
SVIGL can be interpreted as a gradient descent approach
using a special preconditioner and provide the gradient lin-
earization for the optical flow and Poisson-Gaussian ener-
gies used in the main manuscript. Furthermore, we provide
a proof for Proposition 2, show the hyperparameter evalu-
ation for SVI with SGD, and give additional details of our
optical flow experiment in Table 2. Finally, we show some
exemplary results of Poisson-Gaussian denoising and pro-
vide details on the experiment on 3D surface reconstruction.

A. SVIGL as Preconditioned Gradient Descent

Here, we show that an update step of SVIGL as given
in Eq. (12) can be interpreted as one iteration of pre-
conditioned gradient descent. To simplify notation let
Aθ ≡ Aθ

(
θ(t)
)

and bθ ≡ bθ

(
θ(t)
)
. Following, e.g. [29],

we have

θ(t+1) = −A−1θ bθ (20a)

= θ(t) −A−1θ bθ − θ(t) (20b)

= θ(t) −A−1θ

(
bθ +Aθθ

(t)
)

(20c)

= θ(t) −A−1θ ∇θ KL (q || p). (20d)

Therefore, SVIGL performs gradient descent with precon-
ditioner P = A−1θ . This interpretation also allows to intro-
duce a step size parameter α to SVIGL

θ(t+1) = θ(t) − αA−1θ ∇θ KL (q || p) (21a)

= θ(t) − αA−1θ

(
bθ +Aθθ

(t)
)

(21b)

= (1− α)θ(t) + αθ̂(t+1), (21c)

with θ̂(t+1) = −A−1θ bθ denoting the SVIGL estimate as
given in Eq. (12). In practice, our experiments have shown
that the performance of SVIGL is not sensitive to the choice
of the step size parameter. We thus simply set α = 1.
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B. Linearized Gradients
In the following, we show how linearized gradients can

be obtained for the presented applications of SVIGL in op-
tical flow estimation and Poisson-Gaussian denoising. For
other applications, including many models in computer vi-
sion, it is possible to derive parameters Aθ and bθ in a sim-
ilar fashion.

B.1. Optical flow

Here, we show the derivation of a linearized gradient for
a simple optical flow energy using the brightness constancy
assumption, i.e.

E(x,y) =λD

L∑
l=1

ρD

(
It,l +

(
Ix,l
Iy,l

)T (
xl − x0

l

))

+ λS

J∑
j=1

L∑
l=1

ρS

(∥∥∥(fj ∗ x)l∥∥∥2
)

(22a)

=λDED(x,y) + λSES(x), (22b)

with It,l = I2
(
l + x0

l

)
− I1 (l),

(
Ix,l
Iy,l

)
= ∇I2

(
l + x0

l

)
,

and x0
l denoting the point of approximation of the Taylor

linearization. The derivations for the EpicFlow energy func-
tion in Eq. (15) are more tedious, but can be done analo-
gously.

Data term. In a first step, we derive the linearized gradient
for the data energy term. Here, it holds that

∇xl
ED(x,y) =∇xl

ρD

(
It,l +

(
Ix,l
Iy,l

)T (
xl − x0

l

))
(23a)

=ρ′D

(
It,l +

(
Ix,l
Iy,l

)T (
xl − x0

l

))
·
(
Ix,l
Iy,l

)
.

(23b)

The derivative of the generalized Charbonnier [2] used for



ρD(·) can be written as:

ρ′D(x) =
x

c2

(
(x/c)2

max(1, 2− a)
+ 1

)(a/2−1)

(24a)

≡ρ̃D(x) x. (24b)

Using Eqs. (23b) and (24b), we have

∇xl
ED(x,y) =

=ρ̃D

(
It,l +

(
Ix,l
Iy,l

)T (
xl − x0

l

))

·

((
Ix,lIt,l
Iy,lIt,l

)
+

(
I2x,l Ix,lIy,l

Ix,lIy,l I2y,l

)(
xl − x0

l

))
.

(25)

The last identity (Eq. 25) allows us to easily identify a lin-
earized form of the gradient of the data term as

∇xED(x,y) = AD
x(x)x+ bD

x(x), (26)

with

AD
x(x) =

(
D
(
ρ̃D · I2x

)
D
(
ρ̃D · IxIy

)
D
(
ρ̃D · IxIy

)
D
(
ρ̃D · I2y

) ) (27)

and

bD
x(x) =

(
D
(
ρ̃D · IxIt

)
1

D
(
ρ̃D · IyIt

)
1

)
−Ax(x)x

0. (28)

Here, x =
(
x
(1)
1 , . . . , x

(1)
L , x

(2)
1 , . . . , x

(2)
L

)T
denotes the

stacked vector of all horizontal and vertical flow compo-
nents. D(·) turns the argument vector into a diagonal matrix
(short for diag{·}), and the product is applied element-wise.

Smoothness term. For the smoothness term let us first
express the convolution fj ∗ x as a matrix-vector product
Fj · x, with Fj denoting the convolution matrix corre-
sponding to fj and x the vectorized flow as before. With
that, the gradient of the smoothness term ES can be written
as:

∇xES(x) =∇x

J∑
j=1

L∑
l=1

ρS

((
Fjx

)
l

)
(29a)

=

J∑
j=1

FT
j ρ
′
S

(
Fjx

)
. (29b)

Using the derivative ρ′S as given in Eq. (24b), we obtain

J∑
j=1

FT
j ρ
′
S(Fjx) =

J∑
j=1

FT
j D

(
ρ̃S
(
Fjx

))
Fjx (30a)

=

 J∑
j=1

FT
j D

(
ρ̃S
(
Fjx

))
Fj

x (30b)

≡ AS
x(x)x. (30c)

Complete linearized gradient. We now summarize the
results of Eqs. (27), (28), and (30c) to obtain the linearized
gradient as

∇xE(x,y) =λD∇xED(x,y) + λS∇xES(x) (31a)

=
(
λDA

D
x(x) + λSA

S
x(x)

)
x+ λDb

D
x (31b)

≡Ax(x)x+ bx. (31c)

B.2. Poisson-Gaussian denoising

Let us first recap the energy function for Poisson-
Gaussian denoising:

E(x,y) =
λD

2

L∑
l=1

(xl − yl)
2

σ(xl)2
(32a)

+ λS

J∑
j=1

L∑
l=1

ρS

((
fj ∗ x

)
l

)
,

=λDED(x,y) + λSES(x), (32b)

where

σ(xl)
2 = β1xl + β2. (33)

We will derive the linearized gradients for the data term ED
and the smoothness term ES separately.

Data term. The gradient of the data term is given as

∇xED(x,y)

=
(x− y)

σ(x)2
− β1(x− y)2

2σ(x)4
(34a)

=
x

σ(x)2
− y

σ(x)2
− β1x

2

2σ(x)4
+
β1xy

σ(x)4
− β1y

2

2σ(x)4

(34b)

=x

(
1

σ(x)2
− β1x

2σ(x)4
+

β1y

σ(x)4

)
−
(

y

σ(x)2
+

β1y
2

2σ(x)4

)
, (34c)



where all operations are element-wise. The linearized gra-
dient of the data term can then be obtained as

AD
x(x) = D

(
1

σ(x)2
− β1x

2σ(x)4
+

β1y

σ(x)4

)
(35)

bD
x(x) = −

(
y

σ(x)2
+

β1y
2

2σ(x)4

)
. (36)

Smoothness term. For the smoothness term we can re-
use the linearized gradient derived in Eq. (30c).

Complete linearized gradient. We can now put the re-
sults of Eqs. (30c), (35), and (36) together to obtain a lin-
earized gradient of the energy for Poisson-Gaussian denois-
ing, c.f . Eqs. (31a) – (31c).

C. Proof Proposition 2
In this section, we provide a proof for Proposition 2 of

the main paper.

Proposition 2. An energy function can be linearized with a
positive semi-definite matrix Ax if it is composed of a sum
of energy terms ρi(wi) that fulfill the following conditions:

1. Each penalty function ρi(·) is symmetric and
ρ′i(wi) ≥ 0 for all wi ≥ 0. (?)

2. Each penalty function ρi(·) is applied element-wise on
wi, which is of the form wi = Kix+gi(y), with filter
matrix Ki and gi not depending on x. (??)

Proof. From assuming a symmetric ρi(·) in (?), it follows
that ρ′i(·) is point symmetric. Due to ρ′i(wi) ≥ 0 for all
wi ≥ 0 we then find that ρ′i(wi) can be written as

ρ′i(wi) ≡ ρ̃i(wi) ·wi with a ρ̃i(wi) ≥ 0. (37)

For an energy term as described in (??), the gradient w.r.t.
x is given as

∇xρi(wi) = KT
i ·Ci · (Ki · x+ gi(y)), (38)

with Ci = D
(
ρ̃i (Ki · x+ gi(y))

)
. (39)

A linearization can then be obtained using

Ai
x = KT

i ·Ci ·Ki, bi
x = KT

i ·Ci · gi(y). (40)

Since Ci is a diagonal matrix of non-negative elements
(Eq. 37), Ai

x is positive semi-definite as

xTAi
xx = xTKT

iCiKix = vTCiv ≥ 0. (41)

As the sum of positive semi-definite matrices is positive
semi-definite, a matrix Ax composed of energy terms that
fulfill (?) and (??) is positive semi-definite.

D. Hyperparameters for SGD

In the following, we aim to find optimal hyperparame-
ters for the SVI baseline based on SGD. For all experiments
we select an initial step size α0, which is cut after each third
of iterations by a factor of ten. An evaluation of the unnor-
malized KL divergence for optical flow plotted against the
runtime for different initial step sizes α0 of SGD is shown
in Fig. 6a. Here, the KL divergence deteriorates severely
using SGD with a step size larger than 10−6. For smaller
step sizes, SVI with SGD shows a slow convergence such
that we set α0 = 10−6.

Following the same procedure, we perform several ex-
periments for Poisson-Gaussian denoising and evaluate dif-
ferent settings for the initial step size parameter α0 of SGD
in Fig. 7a. Again, an initial step size α0 = 10−6 proves to
be most effective. Smaller step sizes converge too slowly,
while SGD with bigger step size values converges faster
but to a worse local optimum. For an initial step size of
α0 = 10−5 optimization diverges immediately.

Applying SVI with SGD, we observe in both applica-
tions a faster convergence of the KL divergence with a
smaller sample size, but a larger number of iterations, c.f .
Figs. 6b and 7b. We therefore choose |Z| = 12 with 4000
iterations of SGD for the experiments in the main paper.

E. Comparison with ProbFlowFields

In Table 2 of the main paper we evaluate the quality
of the posterior variances obtained with SVIGL. Here, we
follow Wannenwetsch et al. [45] and derive an uncertainty
measure by computing the marginal entropy of the flow at
every pixel. To have a fair comparison with [45], we use the
same EpicFlow [32] energy formulation with learned Gaus-
sian scale mixture penalty functions and explicit indicator
variables for their mixture components. Since SVIGL is
designed for variational inference in distributions with con-
tinuous random variables, we alternate closed-form updates
of the latent indicator variables with SVIGL updates for the
continuous flow variables. For the discrete update, we ap-
proximate the tedious analytical expectation values over the
flow variables with a Monte-Carlo estimator (c.f . Eq. 7b).
This effectively reduces the optimization w.r.t. the indica-
tor variables to an independent update – thus maintaining
the ease of use of SVIGL. Weighting parameters λD and λS
are determined on a training set with Bayesian optimization
[37] using the F1-score as described in [45].

F. Results of Poisson-Gaussian Denoising

Fig. 8 shows some example results of SVIGL applied to
Poisson-Gaussian denoising on the BSDS dataset. High un-
certainties can be observed especially on object boundaries.
Due to the high amount of noise, a strong smoothness term



(a) (b)

Figure 6. Unnormalized KL divergence vs. runtime for optical flow with SVIGL and SVI with SGD with different step sizes (a) and
different numbers of samples and iterations (b). Values averaged on the validation set.

(a) (b)

Figure 7. Unnormalized KL divergence vs. runtime for denoising with SVIGL and SVI with SGD with different step sizes (a) and with
different numbers of samples and iterations (b). Values averaged over the BSDS test set.

maximizes the PSNR on the training set. Therefore, the de-
noised images tend to be rather smooth in general.

G. Results on Sintel Test

As described in Sec. 5.1, we apply SVIGL as well as two
MAP baselines on the full-sized Sintel test images in order
to evaluate their performance. Figure 9 shows a screenshot
of the private Sintel benchmark table with results for both
methods. SVIGL outperforms the underlying FlowFields
method [1] as well as the L-BFGS baseline and shows an
AEPE result on par with the corresponding MAP estimate
using GL. Moreover, SVIGL estimates are competitive with
the finetuned version of FlowNet2 [49], i.e. the state-of-the-
art baseline for optical flow prediction with convolutional
neural networks.

H. 3D Surface Reconstruction

We now give more details on the application of SVIGL
to 3D surface reconstruction. First, we restate the energy of

Lipman et al. [25], which is given by

E(X,P,C) =

|X|∑
i=1

|P |∑
j=1

‖xi − pj‖ · h
(
‖ci − pj‖

)
−
|X|∑
i=1

|C|∑
i′=1

λi‖xi − ci′‖ · h
(
‖ci − ci′‖

)
. (42)

Here, pj ∈ P denote the noisy input points, ci ∈ C are
the current estimates of the smoothed points, and xi ∈ X
the new estimates of the smoothed points. While the first
part of the energy forces the new estimates to be close to
the input points, the second term pushes the reconstructed
points apart by penalizing points in X that are too close to
points in C. The contribution of each term is weighted by
the Gaussian kernel h(·).

A closed-form solution to minimizing the above energy
is given in [25]. This solution is then used in a fixed point
scheme as

Xt+1 = argmin
X

E(X,P,Xt), (43)

where X0 is initialized as a L2 projection of the input
points.

In a variational inference setting, closed-form updates
are no longer possible due to introducing the additional vari-



Figure 8. Examples of ground truth (left), noisy images (second column), estimated clean images (third column), and uncertainty estimates
(right) from SVIGL on the BSDS test set.

...
...

...

Figure 9. Screenshot of the private Sintel benchmark table (final) with results for SVIGL, MAP + GL, MAP + L-BFGS, and the original
FlowFields approach [1] (status as of March 2018).

ance variables σ of the variational posterior. Hence, we em-
ploy SVIGL updates instead. To be able to apply SVIGL,
we require a linearization of the energy gradient. The spe-
cific form of the energy in Eq. (19) allows for a diagonal
linearization:

∇xi
E(X,P,C) =

∑
j∈J

(xi − pj)
h(‖ci − pj‖)
‖xi − pj‖

−
∑
i′∈I

(xi − ci′)
h(‖ci − ci′‖)
‖xi − ci′‖

. (44)

In total, we run 10 iterations of Eq. (43). In each iteration,
we compute a single SVIGL update with a sample set size
of |Z| = 5.

References
[49] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and

T. Brox. Flownet 2.0: Evolution of optical flow estimation
with deep networks. In CVPR, pages 1647 – 1655, 2017. 4


